Characterizing the stiffness change of the proximal femur between quasi-static and dynamic loading in a fall configuration

Gilchrist S1,2,3,, Guy P3,4, Cripton P1,2,3
1: UBC Mechanical Engineering, 2: UBC Bridge Program
3: Centre for Hip Health and Mobility, 4: UBC Department of Orthopaedics

Introduction

\begin{itemize}
 \item Detect – Prevent – Treat
 \item Detection is key to prevention
 \item \textit{aBMD} predicts <30\% of fractures [1].
 \item New imaging may change that – we need to be prepared!
 \item Understand mechanism
 \item Current lab models are quasi-static.
 \item Clinical fractures are dynamic.
\end{itemize}

Objective

To determine if loading behaviour of the proximal femur is different under quasi-static loading and simulated fall conditions.

Methods

\begin{itemize}
 \item 17 fresh frozen femurs \textit{DXA} scanned.
 \item Tested at 0.5 mm/s in a materials testing machine to 50\% \textit{DXA} predicted failure.
 \item Tested in a fall simulator with impact at 3 m/s [2].
 \item Fall simulator body representation:
 \begin{itemize}
 \item Body mass – 32 kg [3]
 \item Soft tissue – 18 mm foam [3]
 \item Pelvis – 50 N/mm spring [3]
 \item Pelvis & femur inertia compensation [4]
 \end{itemize}
\end{itemize}

Results

\begin{itemize}
 \item Higher \textit{DXA} femurs became stiffer when tested in the fall simulator ($p = 0.015$).
 \item Stronger femurs became stiffer when tested in the fall simulator ($p < 0.001$).
 \item Energy absorption to fracture was not different when grouped by relative stiffness ($p = 0.16$).
\end{itemize}

Conclusion

Proximal femur loading mechanics are affected by the testing method in a significant way. Intrinsic properties (e.g. \textit{DXA}) play a part in determining how the bone will react to different loading scenarios.

References