Spinal Kinematics in Children Exposed to Low Speed Frontal Acceleration

Timothy Kerr BS1, Sriram Balasubramanian PhD2, Thomas Seacrist MBE2, Eric Constans PhD1, Kristy Arbogast PhD2,3
1Rowan University, 2The Children’s Hospital of Philadelphia, 3University of Pennsylvania School of Medicine

BACKGROUND
Head injuries are the most common injuries sustained by children in motor vehicle crashes. Prevention of these injuries through advances in vehicles and restraint systems requires a biofidelic anthropomorphic test device (ATD). Pediatric ATDs are primarily developed from scaling down adult volunteer and cadaver impact test data. Limited experimental data exist on pediatric head and neck kinematics in order to evaluate the biofidelity of the ATDs. The aim of the current study is to evaluate the head and spinal kinematics of pediatric and adult volunteers in response to a dynamic low-speed frontal crash. The data will be used to develop mathematical models and to provide empirically derived scaling factors between children and adults.

METHODS

- Pilot testing was performed on a 14 year old male subject
- Spherical reflective markers were placed on head, neck, torso, upper and lower extremities and tracked using a 3D motion analysis system
- An angular rate sensor was mounted to a bite plate of an athletic mouth guard to measure head rotational velocity
- Acceleration pulse was measured using a sled-mounted accelerometer
- Subject was aware of impending impact and a total of 6 runs were conducted

RESULTS

- Low speed volunteer testing of male subjects ages 6-40 years will be performed
- Safe limits on a volunteer crash pulse (Figure 1) were defined from measuring the impact of a bumper car in an amusement park setting
- A pneumatically actuated – hydraulically controlled sled (Figure 2) was used to provide the acceleration pulse to the volunteer

DISCUSSION

- This study provides the first measure of pediatric kinematics in a dynamic frontal crash environment
- The head angular accelerations are considerably lower than the injury threshold values (Figure 8)
- The head angular accelerations measured in this study were lower than the severity of injury (SI) threshold values from Gennarelli et al., 2003

FUTURE WORK

- Low speed volunteer testing of male subjects ages 6-40 years will be performed
- Compare trajectories of Hybrid III adult and pediatric ATD’s to volunteer data
- The head and spine kinematics obtained from this study will be used to develop scaling factors between adults and children
- This data will be used as part of the validation dataset for a computational model of the child that could further be used to establish pediatric biofidelity corridors

ACKNOWLEDGEMENTS

- TK Holdings Inc., for funding this study
- Jamie Sabinsky, Advanced Fluid Systems
- Charles Linderman, Rowan University
- Ewout Van der Laan, Eindhoven University
- Richard Kent, University of Virginia