Applicability of CPR-based Thoracic Stiffness and Damping Properties to the Motor Vehicle Crash Environment

Akira Toh1, Kristy B. Arbogast1, Matthew R. Maltese2
1) Center for Injury Research and Prevention; 2) Department of Anesthesiology and Critical Care Medicine
The Children’s Hospital of Philadelphia

INTRODUCTION

Motor vehicle crashes are the leading cause of death and injury for children and adults between 3 to 36 years old in the United States (Centers for Disease Control, 2006) A biofidelic anthropomorphic test device (ATD) or crash test dummy is essential for developing crash safety systems for occupants.

Typically, post-mortem human subject (PMHS) experiments are conducted to obtain necessary data to design ATD

Limitations are associated with biomechanics data obtained by PMHS testing

Differences between PMHS and living humans

The age range of test subjects is small – typically elderly

Recently collected thoracic force-deflection data from cardio-pulmonary resuscitation (CPR) patients offer a large dataset of thoracic biomechanical data across a broad age range

The applicability of CPR data to inform ATD biofidelity requirements is unknown

The purpose of this study is to evaluate the use of CPR data-derived thoracic stiffness and damping properties in an impact model of the thorax

METHOD

PMHS Tests (Kroell 1974)

Blunt hub impact to PMHS thorax with varying impactor mass and initial velocity (Kroell et al. 1974)

Spring mass damper (SMD) model proposed by Neathery et al. (1973) based on the PMHS experiment - this model gives force-deflection response of thorax

Data from PMHS experiment is used in the current design of crash test dummy or ATD

NEW METHOD

Force-deflection property of chest is measured when subject receives CPR

Force-deflection data from CPR are extrapolated to loading rates equivalent to Kroell PMHS experiments

Data is solved using Runge-kutta integration and extracted chest properties are then integrated into the SMD model

Compare the differences/similarities in response between PMHS and CPR derived models

REFERENCES


RESULTS

The spring-mass damper (SMD) model proposed by Neathery et al. (1973) was reproduced (first model)

A second model, SMD-CPR, was created by replacing the thoracic spring (k12) and damper (c12) with parameters derived from CPR

A third model, SMD-CPR-C, was created by replacing only the thoracic damping constant in SMD model by the CPR derived model

A fourth model, SMD-CPR-K, was created by replacing only the thoracic spring constant in the SMD model by the CPR derived value

Parametric study of the SMD-CPR-K model was performed to quantify the effects of changes in mass, spring, and damping constants on the model force-deflection curve

Increasing mass of the sternum increased the stiffness early in the event

Increasing magnitude of the spring constant of the sternum increased the stiffness early in the event

Increasing magnitude of the damping constant of the thorax lowered the deflection later in the event

DISCUSSION

• Incorporation of the CPR data yields results different from the original PMHS impact data

• In general, lower force and greater deflection

• Differences may be due to

• Variations in biomechanical characteristics between the PMHS and living subjects

• The simplicity of SMD model

• A more complex thorax model, with more masses, springs, and dampers may need to be introduced to yield higher accuracy

• Difference in experimental procedures

• PMHS experiment – apply blunt hub impact, with certain impactor mass and velocity, to the chest of test subjects

• CPR experiment – extrapolate force-deflection data, which were obtained under low force condition, to loading rates equivalent to PMHS experiment

CONCLUSION

• SMD-CPR, SMD-CPR-K, and SMD-CPR-C model indicates that when stiffness and/or damping of chest in SMD model is replaced with CPR derived values, resulting force-deflection response does not fit within the standard corridor

• Each segment of force-deflection curve is affected by different parameters or specific part of the chest

ACKNOWLEDGMENT

• This research was supported by the United States Department of Transportation, National Highway Traffic Safety Administration, DTFH22-07-H-00085