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Introduction Results and Discussion
A Automotive collisions are the most common etiology for cervical Single Element Simulation
spine injuries, with approximately 44% being traumatic injuries (AlS . * * .
3+) [Myers, 1995 Carter, 2002]. Cortical Bone Shell Element Trabecular Bone Solid Element
A The lower cervical spine, particularly at the C5-C6 level, was the o )
most commonly involved region [Yoganandan,1989]. 0005 | /_
A At the lower cervical spine, the most common mechanism of injury ~ - S
was presumed to be flexion-compression, resulting In wedge 508 04 0 0.2 04 06
fractures and burst fractures [Argenson,1997]. g : e
Motivation of Study
A Human body models currently utilize isotropic symmetric elastic- o015
plastic material models to predict hard tissue response and failure. | o
A Cortical and trabecular bone materials exhibit asymmetric, -~ prisatonic Mode tLongitgime s S ronic Model (Transuersa
anisotropic and rate dependent mechanical properties. Trabecular — Asymmetic Model == Literature (Longitudinal) [Liu, 2013]
bone Is often characterize as a foam material exhibiting progressive | z — asymmetric model (red curve) A Compression responses [Liu,2013] were
crushing leading to consolidation under compression loading. orovided tension and compression extended to include the crush plateau and
Objective responses that were in agreement with ~ densification region.
A _ _ o _ _ the |onoitudinai direction (osteon A AniSOtrOpiC model in transverse direction was
and _fallure IN human bpdy mc_)dels (HI_3I\/I) and_ S|mulz_;1te compression A The anisotropic model (dotted blue: [Augat, 1998; Sanyal,2012; Mosekilde,1985].
direction) predicted the anisotropic Iongitudinal modull and ultimate stresses well
MethOdS response but did not incorporate IN -bOth te_nsion and Compress_ion. The
| asymmetry in tension and compression. ~ anisotropic model under-predicted the
1) Experimental Data ultimate strain in tension.

A Quasi-static stress-strain curves for cortical and trabecular bones
were digitized from experimental studies [Hansen, 2008; Liu,2013].

A The material properties were from relatively young individuals. Fracture Patterns Kinematic Response
Cortical bone: diaphysis of femur, 51 year old male [Hansen,2008]; Asymmetric Model  Anisotropic Model
Trabecular bone: Cervical spine with high apparent bone density of
0.9247g/cc) [Liu,2013].

A Axial compression experimental failure values and displacements of
the cervical spine segments were used to assess the model
response [Carter,2002].
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2) Single Element Simulation

A A 1mn? area shell element and a ImnmBsolid element were created .
to verify the cortical and trabecular bone models, respectively. TN Y ™ Displacement (mm)
A Quasi-static tension and compression simulations were undertaken P

at a rate of 0.001/s for comparison to the experimental data.
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Figure 2: Kinematic Responses (Asymmetric: Max Force

_ _ % 6.9ms °-8MS  _4 78kN, Max Displacement= 3.66mm: Anisotropic: Max
Cortical Bone Shell Element Trabecular Bone Solid Element Force= 4.47kN, Max Displacement= 3.59mm)
I
v v . .
Asymmetric Anisotropic - — — A Asymmetric model (solid red curve) and
- - - - symmetric nisotropic Foam L anisotropic model (dotted blue curve) are
Elastic Plastic Elastic Plastic = Model Model . 9.5ms oame |
Model Model Oam IViode Od€ °MSin reasonably good agreement with
11 11 11 - faillure forces of young specimens (green
= - circles) but with higher failure
> ¢ 1oams ke Lo ' ... displacements (~0.5mm).
. " s Y A Both models fall within the range of
Figure 1: Element Erosion Progression of C5 fallure displacements for all test samples
Segment(Brown: Eroded Cortical; Blue: Eroded Trabecular) (grey circles).

3) Axial Compression Simulation

Boundary Conditions

A The C6 inferior endplate was fixed as in the
experiment.

A A 40N axial preload was applied as reported
INn the experimental tests.

A The C4 superior endplate was assigned an
axial displacement with a Haversine velocity
profile (peak velocity of 1.493mm/ms and a
pulse width of 18ms).

A The asymmetric model fracture was predicted to initiate at the
superior region of the C5 vertebral body and progressed towards C6.
The anisotropic model initiated failure within the vertebral body.

A Studies have shown that damage is dominated by trabecular bone
and the tissues that have a higher risk of failing are located near the
endplates as opposed to the mid transverse region [Eswaran, 2007].

Figure 3: 15t principal strain A Fracture at the base of the pedicles (predicted by the asymmetric

plot showing fracture atbase  model) (Figure 3) has been reported [Hongo,1999; Wilcox 2004]

of pedicles in asymmetric attributed to high tensile stresses during compression loading.

model
Conclusions Acknowledgements
A Both asymmetric and anisotropic material properties in the segment model demonstrated good comparison to the ' ﬁsnmc :ff‘&" compute | calcul
kinematic response from the experimental test specimens. Both models predicted failure forces in agreement with SO T
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younger specimen values, but over-predicted failure displacements by approximately 0.5mm.
A The fracture in the anisotropic model was predicted to initiate within the vertebral body. The asymmetric model fracture FCA
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Initiated at the superior region of the vertebral body and was comparable to fractures observed in experiments. Canadadke




