VirginiaTech. Institute for Critical Technology and Applied Science

Differences in bicycle helmet performance under real-world impact conditions using standard and oblique test rigs

Megan L. Bland, Craig McNally, Steven Rowson

Virginia Tech, Department of Biomedical Engineering and Mechanics

Virginia Tech – Wake Forest University Center for Injury Biomechanics

Introduction

- Cycling is the leading cause of sport-related head injuries in the US.¹
- Bicycle helmets must comply with standards limiting peak linear acceleration (PLA) to <300 g in impact testing.
- Limitations of standards:
 - Pass-fail; do not provide data on which helmet designs offer better protection.
 - o Test more severe impacts than those seen in typical cyclist accidents (~100 g).²
 - No testing at helmet rim, a common real-world impact location.^{2,3}
 - o Only measure PLA in simplified normal impacts, while real-world accidents are oblique and involve rotational

Methods

Oblique impacts

Low: average cyclist head impact

High: standardspecified for normal impacts, moderate for oblique impacts

4 configurations per test rig, each tested 4 times per helmet:

Data Analysis

- Normal impacts: PLA
- Oblique impacts: PLA and peak rotational acceleration (PRA), concussion risk

acceleration, a major contributor to concussion.⁴

Objective: To investigate differences in protective capabilities of bicycle helmets under real-world conditions using standard normal and oblique impact rigs.

Bell Star Pro

(BSP)

\$240.00

Ten helmet models were impacted on a standard drop rig with a flat anvil and on a custom oblique rig with a 30° anvil.

ANOVA, nonparametric correlations

Bell Solar Flare (BSF) \$40.00

Bell Super 2 MIPS (BMIPS) \$155.00

(CW)

\$234.99

Giro Sutton Catlike Whisper MIPS (GMIPS) \$234.99

Normal (standard) impacts

Nutcase Watermelon (N) \$69.99

Smith Optics Overtake (SOO) \$250.00

(ST)

\$23.00

S-Works Evade (SWE) \$225.00

Normal Impacts

A

ב

uo

(based

Low velocity High velocity

> Oblique impacts produced concussion risks ranging from 2-99%, spanning over 60% in single

- PLA in normal impacts averaged 105±22 and 227±46 g at the low and high velocities.
- Temporal PLAs were higher, although two helmets bottomed out in the frontal-high velocity configuration and would have failed current standards.
- Many significant differences were found between helmet models.

Helmet	Summed Rank	t.		Helmet	Summed Rank	 Helmet rank was
BSP	10	Worst	Oblique Impacts (based on concussion risk)	SOO	5	 summed across configuration to indicate overall performance. Rank was correlated within configurations and across test rig. Variations in PRA altered rank magnitude and order for oblique impacts.
SOO	10			BSP	10	
BSF	14			CW	18	
GS	20			GS	21	
SWE	22			BMIPS	22	
CW	23			BSF	23	
BMIPS	26			SWE	25	
ST	31			Ν	27	
GMIPS	32			ST	33	
Ν	32			GMIPS	36	

Discussion

- Many significant differences in accelerations were found between helmet models. Oblique impacts showed considerable risk of concussion for some models.
- Temporal PLAs were generally higher than frontal PLAs, likely due to a larger radius of curvature at the temporal location, which produces larger contact areas and increases effective liner stiffness.

- PLA in oblique impacts averaged 109±24 and 154±27 g at the low and high velocities, while PRA averaged 4.6 ± 0.7 and 6.2 ± 1.1 krad/s².
- Temporal PLAs were again higher than frontal, while PRA varied less by location.

- There were several PLA outliers in the frontal-high velocity configuration for both impact types. This location is not included in standards testing, but is a common impact location in cyclist accidents.^{2,3}
- Non-road helmets were generally ranked poorer, suggesting this style may offer inferior protection compared to road helmets.
- While helmet rank was similar across configuration and test rig, several helmets produced significantly greater PRAs and higher concussion risks, enhancing discrimination of overall performance.

Conclusions

- Significant differences exist in helmet performance under real-world conditions.
- Extreme PLAs were observed at the frontal location in the high-velocity condition, suggesting that standards testing should be expanded to include the helmet rim.
- There is clinical value in assessing helmet performance under oblique impacts, as these impacts reflect real-world accidents and enhance rank discrimination through the addition of rotational acceleration.
- These results can be used to inform standards testing and improve bicycle helmet safety.

Acknowledgements: Insurance Institute for Highway Safety

References: ¹AANS, "Sports-related Head Injury," 2014 ²Williams, Accid Anal and Prev, 1991 ³Bourdet, J Sports Eng & *Tech*, 2012. ⁴Gennarelli, TA et al., *SAE Tech Paper 720970*, 296-308, 1972