Model-Aided Design of a Rear-Impact Collision Testing System for in-vivo Investigations

Jeff M. Barrett¹, Kayla M. Fewster¹, Chad E. Gooyers², Robert J. Parkinson², Jack P. Callaghan¹

¹Department of Kinesiology, University of Waterloo, Waterloo, ON ²Biomechanics Group, 30 Forensic Engineering, Toronto, ON

A simple mechanical model of a rear-impact collision testing system was able to successfully aid in the design of a test system for *in-vivo* volunteers.

Simple Model:

Equation of Motion:

$$m \ddot{s} + b \dot{s} + k s = -mg(\sin \theta - \mu \cos \theta)$$

Initial Conditions:

$$\begin{cases} s(0) = 0 \\ \dot{s}(0) = -\sqrt{2Lg(\sin\theta - \mu\cos\theta)} \end{cases}$$

Table 1: Estimated Design parameters values from least-squares. These were calculated as the design parameters which minimized the normalized-squared error between the estimated impact parameters and the desired impact parameters.

Stiffness	Damping	Ramp Length Angle		
$31991 \mathrm{\ N/m}$	593.78 Ns/m	1.12 m	5.80	

Table 2: Comparison of the desired impact parameters to those estimated from the model, to those measured from impact testing.

Variable	Desired	Estimated	Measured
	Value	Value	Value
Duration	$135 \mathrm{ms}$	123.5 ms	107 ms
Restitution	0.60	0.599	0.511
Max Acceleration	3.5 g	3.3 g	3.99 g
Delta-V	$7 \mathrm{\ km/h}$	$7.99 \mathrm{\ km/h}$	$7.26 \mathrm{\ km/h}$

