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Introduction 

Background 

 

Methods   

1. Relevant parameters of the flow were used to determine 

the order of important non dimensional ratios [Table 1]. 

These ratios were used to scale N-S and continuity 

equations to obtain a simplified system of equations [Eqs. 

(1)-(4)] that govern the CSF flow in SAS. 

2. A new  FE CSF model was developed to compute the 

CSF velocity & pressure for a prescribed brain & skull 

motion [Eqs. (5)-(7)]. 

Results 

  

Conclusion 

A novel computationally efficient FE  model has been 

developed to compute the CSF flow in the brain skull 

interface.  A coupling algorithm is currently being devised to 

establish the interactions between CSF flow and brain 

deformations during an impact to the head 
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BRAIN-SKULL INTERFACE: MENINGES + SAS 

• Subarachnoid space (SAS):  A chamber containing 

cerebrospinal fluid (CSF) & trabeculae 

• Meninges: 3 membranes between brain & skull.  

The interface cushions the brain during an impact by : 

• Allowing for relative motion between brain & skull 

• Reducing mechanical stresses & strains on the brain 

Several finite element head models (FEHM) have been 

developed in literature  to study brain injury mechanisms 

due to impact. A major source of discrepancy among the 

FEHMs is the choice of constitutive model for CSF[3-5]: 

• Solid: Elastic, Viscoelastic, Hyperelastic 

• Simplified fluid: Hydrostatic fluid, Inviscid fluid, Mie 

Grunsein equation of state (EOS) 

The drawbacks of the aforementioned models are:   

• Excessive prediction of the brain displacement [Fig. B] 

and variability in the stress wave propagation in the 

brain [Fig. C]. Wide ranges of constitutive parameters 

reported in literature [3-5]. 

• SAS requires a fine mesh across its thickness [Fig. A] 

Anatomy of the brain skull interface [1] (left) and 

axial view of FE mesh of the head (right) [2].  

  

TABLE 1 : NOMINAL VALUES OF PARAMETERS 

SAS thickness (h∗) 1 mm Density (ρ)  Viscosity (𝜇) 

Brain radius (𝑅∗) 70 mm 1150 kg/m3 0.24 Pa.s 

Radial velocity (𝑣0) 1 mm/s CSF+ trabeculae [8] 

Diffusion time 𝑇𝑑 = 𝜌ℎ∗
2

𝜇 :  10 ms Impact time (T) 15 ms 

SCALING PARAMETERS [9] 

Aspect ratio Reynolds number Temporal ratio 

ϵ =
ℎ∗

𝑅∗
≪ 1    (𝑎) 𝑅𝑒 =

𝜌𝑣0ℎ
∗

𝜇
≪ 1    (𝑏)  

𝑇𝑑
𝑇
~1   (𝑐) 

Schematic of head geometry, coordinate system & an 

element of the novel FE model used in this work. 

LUBRICATION THEORY WITH TEMPORAL INERTIA 

(NOVEL CONTRIBUTION) 

Continuity Eq. 

averaged along 

r 

(2) 

(3) 

(4) 

(1) 

: Average velocities along r 

Navier-Stokes Eqs. 

scaled using (a-c).  

Eq.(1) is independent of r, Eq. (2) establishes that pressure 

is constant along r and Eqs.(3-4)  are 1D parabolic PDEs in 

r for a given 𝜃, 𝜑 .  Eqs.(3-4) are solved for a given 

pressure 𝑝 𝜃, 𝜑, 𝑡  using a Fourier series approach. Hence, 

the average velocities            are obtained as : 

(5) 

(6) 

where 

Brain & Skull interface velocity & acceleration components 

Convolution 

integral 

Next, Eqs.(5-6) are substituted in Eq. (1), resulting in an 

integro-differential equation for the pressure which is solved 

numerically using  a novel FE model. 

Nodal 

pressure  

(7) System of FE 

equations solved 

incrementally using 

numerical integration 
Nodal 

load 

Stiffness 

matrix 

Elastic Mie-Gruneisen EOS Viscoelastic 

Von-Mises stresses in the brain at t=5.5 ms for  frontal 

impact (Nahum’s load) & different CSF models [5]. 
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Relative motion of brain w.r.t skull predicted by 

THUMS FEHM  for different CSF interface models 

compared to experimental data [4].   

Experiment 

CSF (Elastic solid) 

Experiment 

Brain fixed to skull 

Several experimental works [6-7] have used surrogate head 

models to observe significant flow of CSF at the brain-skull 

interface during impact. Hence it is essential to study the 

role of CSF flow in injury prevention and mitigation. 

Lubrication theory is a simplification of Navier-Stokes 

(N-S) equations which assumes that the liquid flow occurs in 

a narrow channel between two moving surfaces. Clearly, it 

can be employed for the CSF in SAS (thickness ~ 1mm) . 

Objective: To develop a lubrication theory based model of 

the CSF flow in the SAS during an impact to the head.  
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The proposed FE model is implemented in Matlab (R 2017b). 

The simplified geometry & B.C. data [Fig. E] are used to 

validate the novel FE model using Abaqus CFD (6.14-5).  

Brain translating w.r.t skull in z direction 

𝜃 

𝜑 

𝑅 

CSF 

Skull 

Brain 

h 
h 

Conventional

CFD mesh 

Mesh of novel 

FE model 
x 

y 

𝑅𝑏=70 mm  G
e
o

m
e
try

 &
 B

.C
. 

ℎ(𝑡 = 0)=3 mm 

𝒗𝑠(𝑡) = 𝟎 

 𝑣𝑏𝑧 𝑡 = (10m
s2 )𝑡  

𝑝 𝜃 = 𝜋
2 , 𝑡 = 0 

Comparison of pressure (left) and velocity profile (at 

𝜃 = 𝜋
4 ) obtained from both models at different time 

instants.  
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Proposed model Abaqus CFD 

Proposed model Abaqus CFD 

Domain 𝜃 ∈ 0, 𝜋  (axisymm. flow) 3D Shell of thickness 3 mm 

Mesh 
Stationary 1D linear 

mesh (𝑁𝑒 = 70) 
Moving 3D Linear brick 

mesh (𝑁𝑒 = 51600) 

Cost 16 s 300 s 

radial coordinate 

𝜂 =
𝑅𝑠−𝑟

ℎ
 

DISCUSSIONS 

• Excellent overall agreement b/w proposed & CFD 

model for both velocity & pressure profiles. About 

10% error between the pressure profiles observed at 

contrecoup location at larger times.  

• Coup pressure increases at higher rate as compared 

to contrecoup [Fig. F, left] as seen in experimental 

tests of translational head impact. Transient 

squeezing effects also observed [Fig. F, right] [9]. 


