INTRODUCTION

- A computed tomography (CT) scanner is a prevalent clinical instrument providing images that can be used to assess bone quality1. Cortical thickness (Ct.Th) has been established as an important predictor of bone strength across the skeleton; however, data are lacking in the variation present both along the diaphysis of the tibia and within a cross-section of the tibial cortex2–3.

- Quantifying bone quality across various skeletal elements is important in understanding fracture risk, namely for the purpose of creating a more biofidelic finite element (FE) human body model4. Considering the commonality of tibia injuries in automotive crash scenarios, especially pedestrian impacts, it is of interest to investigate tibial variation to improve the accuracy of injury prediction4.

- It is also commonly assumed by commercially available computer analysis software programs that an averaged Ct.Th value sufficiently represents the amount of bone present in the entirety of a cross-section.

Therefore, the purpose of this study is twofold:

- To quantify the variation in Ct.Th between segment sites of the tibia
- To quantify the variation of Ct.Th within a cross-section

MATERIALS AND METHODS

- Sixty left tibiae were obtained from 30 male (63.6 ± 10.0 years) and 30 female (63.4 ± 15.8 years) post-mortem human subjects (PMHS) ranging from 45 to 89 years of age.

- Tibiae were scanned on a Philips Ingenuity 64-slice CT at 0.671mm slice thickness. Acquisition parameters were consistent, resulting in an in-plane resolution of 0.335mm.

- CT images were imported into commercially validated SkyScan (Bruker) software for segmentation into 38%, 50%, and 66% segment sites relative to the distal articular surface (Fig. 1). Average Ct.Th values were automatically quantified per segment site.

- An ANOVA was performed using SkyScan Ct.Th values to investigate variation in average (around the cross-section) Ct.Th between segment sites of the tibia.

- OsirX MD (v.8.0.1) was used to similarly segment tibiae for ImageJ (NIH) analysis. Manual measurements of Ct.Th were performed on 8 equidistant vectors across each tibia cross-section in ImageJ (Fig. 2).

- Within the cross-section of each segment, manual Ct.Th measurements were compared using two ANOVAs: first, to compare the Ct.Th at the 8 equidistant vectors for each segment site individually; and secondly, to compare individual matched vectors between the three segment sites.

REFERENCES CITED


ACKNOWLEDGEMENTS

Impact grant from the Ohio State University Center for Bone and Joint Research and the Ohio State University Clinical and Translational Research Institute (CTSA) grant (UL1 TR000124) and the Ohio State University Wexner Medical Center Translational Research Institute (U54 GM103533). This work was supported by National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health through grant (AR050449-11). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

DISCUSSION AND CONCLUSIONS

- Ct.Th was averaged across the entire cross-section per segment site, and significant differences were found between both 38% and 50% compared to 66% (p<0.01); however, no differences existed between 38% and 50% (p=0.07) (Fig. 3).

- Significant differences in Ct.Th were observed between vectors within each cross-section (p<0.05) at all segment sites. Figure 4 depicts relationships at 66% only.

- For both sexes, post-hoc tests found the anterior (vector 1) Ct.Th significantly larger than all other vectors at all segment sites.

- In males only, at 38%, the posterolateral (vector 6) was significantly larger than anteromedial (vector 2), medial (vector 3), lateral (vector 7) and anterolateral (vector 8) (p<0.05). 50% demonstrated the fewest differences (vector 6 > 7 and 8). 66% demonstrated the largest amount of variation between vectors (Fig. 4).

- While there were significant differences found between segment sites at the same vector (p<0.02) except at the posterior location (vector 5) in males, and vectors 3-6 in females (Table 1).

- Generally, Ct.Th values significantly decreased at 66% compared to 38% and 50% in both sexes for select vectors (Table 1). 38% and 50% Ct.Th were not significantly different with the exception of vectors 1 and 8 in males (p<0.04).

- Results indicate a significant amount of Ct.Th variation both along the tibia and within each cross-section at varying segment sites, therefore, Ct.Th variation should be accounted for when creating biofidelic finite element models.

- Considering previous studies have mentioned both the importance of FE modeling in biomechanical studies and the impact of Ct.Th on such models, it is important to quantify Ct.Th variation4.

- While an average Ct.Th value qualitatively appears to be representative of Ct.Th at different points around the cross-section, more work must be done to quantify differences between individual vectors and average Ct.Th.

- While a deficit in Ct.Th has been linked to increased fracture risk, it has not been investigated if Ct.Th variation has an effect on fracture propagation6.

- 88.9% of tibial shaft fractures are located in the middle or distal part of the shaft, which implies there may be more factors than Ct.Th affecting fracture risk considering Ct.Th increases as total bone size decreases moving distally7.

Table 1. Results from the ANOVA comparing a single vector between the segment sites (38%, 50%, 66%). * indicates significantly smaller 66% compared to 38% and 50% using Bonferroni post-hoc tests.