Simulated Autonomous Aerial Vehicle Impacts to the Pediatric Head

Jalaj Maheshwari, M.S.1,2; Shreyas Sarfare, M.S.1,2; Nhat Duong1,3; Aditya Belwadi, Ph.D.1

1Center for Injury Research and Prevention, The Children’s Hospital of Philadelphia
2Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania
3School of Biomedical Engineering, Science and Health Systems, Drexel University

Background and Objectives

- Number of autonomous aerial vehicles increasing for consumer and commercial use
- It is important to study the injury implications of potential crash impacts with these vehicles
- The objective of this project was to gain insight into injuries sustained to the pediatric head by using simulated autonomous aerial vehicle impacts with the PIPER 6-year-old human body finite element model

Computational Model Setup

- 16 simulations were setup by varying three parameters: Rotor with and without an external cowl, mass 1 kg and 5 kg, and velocity of 5 mph, 10 mph, 25 mph, and 35 mph were used
- Head, chest, and pelvis accelerations, HIC, and surface ocular pressure were extracted and compared with each other.

Data/Results

- From the simulations it is observed that at higher speeds even with a considerably small weight of 1 kg, the child’s head is pushed back causing an extension in the neck
- The angular change in position of the head before and after the impact, measured from the C7 vertebra is about 18.39 degrees
- The rotor without cowl has lower absolute ocular pressure as compared to the rotor with an external cowl for the same speed
- The 5 kg drone has greater ocular pressure and head resultant acceleration compared to the 1 kg drone for the same speed – mass effect
- Rotor with cowl impact suggests possibility of ocular injury at higher speeds according to experimentally recorded threshold for retinal detachment (340 Pa)

Limitations

- This study does not account for the rotation of the rotor blades
- Material properties/shape of the cowl need to be further examined.
- Detailed model of eye to be studied