

Daniel Martel¹ (dmartel@uwaterloo.ca), Steven Pretty¹ (steven.pretty@uwaterloo.ca), Andrew C. Laing¹ (actlaing@uwaterloo.ca) ¹Department of Kinesiology, University of Waterloo, ON, Canada

A proof of concept for using probabilistic methods to simulate a virtual clinical trial to assess the clinical effectiveness of experimentally tested interventions.

INTRODUCTION

Accounting for 7% of all fall-related injuries and over 30% of fall-related hospitalizations¹, **hip fractures** are a serious health concern for older adults. Costing an estimated 1.1 billion annually², ~25% of cases result in death within the

METHODS

Experimental Data

Developing Regression Equations

Data from studies investigating the effects of a hip protector (**HipSaver, Figure 2A**) and a safety floor (**SmartCells, Figure 2B**) on impact force during simulated lateral impacts (using human volunteers and a mechanical test system, respectively) was used to develop **impact force attenuation regression equations** based on the characteristics of the volunteers and the mechanical test system.

RESULTS

Simulations predict substantial reduction
in hip fracture risk (Figure 4, Tables 1&2)

Factor of Risk (FOR) Distributions

first year of injury³.

Previous experimental studies have shown the biomechanical effectiveness of interventions^{4,5}. Logistical and cost barriers have prevented the clinical effectiveness of certain interventions from being quantified.

The objective of this study was to use a **mechanistic**, **probabilistic model** of impact dynamics to predict the **clinical effectiveness** of **safety flooring** and **hip protectors** at reducing hip fracture risk.

METHODS

Probabilistic Model *Generating a Virtual Sample* A sample of 100 000 virtual individuals (VI) were generated to be representative of the

older adult population in terms of physical characteristics (Height, Mass, Age, Sex).

Figure 2: Previously Tested Interventions; A) HipSaver Protector, B) SmartCells Safety Floor

These regression equations were used to calculate the force attenuation provided by the interventions for each VI; this was used to calculate a second, "intervened", Factor of Risk. Completed model seen in Figure 3.

Figure 4: Comparison of Probability Density Functions for FOR by Sex and Intervention; Shaded Area Represents Proportion of Expected Fracture Cases

Table 1: Mean (SD) Factor of Risk for the Baseline, Hip
Protector, and Safety Floor Conditions

	Baseline FOR	Hip Protector FOR	Safety Floor FOR
Female mean (SD)	0.61 (0.28)	0.59 (0.27)	0.45 (0.19)
Reduction from Baseline (%)		3.30%	26.20%
Male mean (SD)	0.93 (0.28)	0.83 (0.23)	0.56 (0.31)
Reduction from Baseline (%)		10.60%	39.80%

This was done by defining the Canadian population probability distributions for each physical characteristic (example: Figure 1).

VIs were defined by drawing values pseudorandomly along each defined distribution.

Table 2: Number of Expected Hip Fractures for theBaseline, Hip Protector, and Safety Floor Conditions

	Baseline	Hip Protector	Safety Floor
Female # FX (% total)	4312 (8.1%)	3414 (6.4%)	617 (1.2%)
Reduction from Baseline (%)		20.8%	85.7%
Male # FX (% total)	15870 (33.8%)	9066 (19.3%)	3801 (8.1%)
Reduction from Baseline (%)		42.9%	76.0%

DISCUSSION

- Proof of concept for performing "virtual" clinical trial to predict clinical effectiveness of experimentally tested interventions
- The model predicted a >20% reduction in the expected number of hip fracture cases with the use of these interventions; decreased risk of fracture
- Predicted clinical effectiveness of these interventions need to be validated against

Figure 1: Height Probability Distributions for Older Adults

Mechanistic Model

Factor of Risk (FOR) principles were used to assess hip fracture risk, where:

FOR = Impact Force / Bone Strength When FOR > 1, Fracture Expected

Impact force and bone strength were calculated by using the physical characteristics of the VI in conjunction with previously defined equations⁶⁻⁸.

Figure 3: Probabilistic Model Structure and Data Flow

Computing Clinical Effectiveness Clinical effectiveness of the interventions was quantified by comparing the number of expected fractures at baseline (no intervention) to the number of fractures expected with either intervention. clinical trial data

• 4 year safety flooring clinical trial soon to be completed

REFERENCES

- [1] Statistics Canada. Canadian community health survey annual component (CCHS). Health Survey. Ottawa: Statistics Canada; 2012. Report No.: 3226
- [2] Nikitovic et al. (2013). Osteoporos. Int. 24, 659–669.
- [3] Parachute. (2015). The Cost of Injury in Canada. Parachute: Toronto, ON, Version 2.2
- [4] Laing et al. (2011). Journal of Biomechanics 44(15); 2627-37.
- [5] Bhan et al. (2014). Journal of Biomechanics 47(10); 2391-7
- [6] Robinovitch SN, Hayes WC, McMahon TA (1991) J Biomech Eng 113:366–374
- [7] Robinovitch SN, McMahon TA, Hayes WC (1995) J Orthop Res 13:956–962
- [8] Roberts BJ, Thrall E, Muller JA, Bouxsein ML (2010Bone 46:742–746

ACKNOWLEDGEMENTS

