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e Pediatric cervical spine injuries account for roughly 10% Phase |
of all cervical spine injuries across all age groups.'=
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Custom fixture compared to manufacturer attachment

. * Fixture-only "worst-case” scenarios showed B oad fixture & ankls sensitivity Bl Ankle attachment B ankis senativ
e Anatomical differences in children may account for this artifact interference only at end of motion for . | . | | | '
increased vulnerability of the cervical spine (c-spine).1# all directions. 5°/s N
e The broad objective of this research Is to quantify e Repeatable measurements showed slight 25 _
biomechanical responses of the c-spine in children 5-7 differences in load distribution and negligible  $°7
years old to aid and improve the biofidelity of pediatric peak torque differences due to chosen S5l
human body models (HBM) and anthropomorphic test equipment sensitivity (Figure 2). Py | | | | |
devices (ATD). Phase || 60 40 20 0 20 40 60
e However, this task is not possible without the e Five female volunteers (25.8 + 5.8 years) “leoss | | ' '
development of a custom fixture that allows the participated. E° ;
guantification of c-spine biomechanics. _ . g0t :
| | o e _oose fit helmets had minimally larger o Ankle attachment
e This study Is focused on the validation of a custom head displacements (<10mm) of the helmet relative ar :
fixture to quantify volunteer c-spine biomechanics. to each subject’s head in both directions. 0 | | , | |
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MATERIALS & METHODS e Helmet fit did not influence peak torque Anatomical Position (8)

generation between subjects (Table 1, Figure 2: Torque output comparison between the custom head fixture
e A custom head fixture was designed and machined as an Figure 3). and the manufacturer pBrovide(.JIgl(;\oI;Ie atltac_hment. Top: 5°/s velocity.
attachment to a Biodex Isokinetic Dynamometer to quantify o | ottom: GUs veloctty
c-spine strength and stiffness of pediatric volunteers in the o Hetl)rne: f,'t Cllal'(lj'tn(?ct Influence Table 1. Peak Torques Per Helmet Fit
anterior-posterior (AP) and I‘ateral directions (Figure 1). | SL_J hjer(]: S a |.| y 10 e_ngage AP Direction Lateral Direction
Lateral 2 3 with the testing equipment. Subject | Peak Peak A Peak Helmet | Peak Peak A Peak Helmet
| o FOr all subjects, SEMG and Torque Torque Torque Fit Torque Torque Torque Fit
| recordings showed Hel.met Flex. Ext. (Nm) ATorque| Right Left (Nm) ATorque
[ | negligible differences In fit (Nm) _ (Nm) (Nm) | (Nm) _(Nm) (Nm)
3 e L. AO1 L 8.20 13.16 4.96 0.44 12.33 11.68 0.66 0.18
Vi muscle activation between | ao; s | 1108 [JEEEEN 4.5 1478 1393  0.84
helmet fits. AO2 L | 1020 1197 1.77 10.25 1038  0.13
_ 0.55 0.91
Figure 1: Custom head fixt_ure mounte_d on the Bi_ode>_< Isokineti(_: between helmet fit type were AO3_L 9.54 2.92 0.87 12.50 12.47 0.03 011
Dynamometer arm. Left: Subject seated in the AP direction of motion. _ AO3 S 8.55 2.05 10.78 10.92 0.14
Right: Subject seated in the lateral direction of motion. W|th.|n O-].-l—bl-thdl\.lm for all AO4 L 7 66 5 79 035 3.80 328 0.53 018
e VValidation of the fixture was performed in 2 phases to better subjects in both directions. AO4_S | 6.85 5.44 | 8.85 8.50 0.35 |
understand the usability of the custom head fixture. e Differences in torque AO5_L | 8.95 5.41 0go | 1163 L1361 1.8 108
Phase I prOdUCtion were more AOS_S 220 Largest pe:(.tfr:}que per helmet fit = 10.1?gest peacl)<.t2r(<):|ue per helmet fit
MeChanlcal Va“datlon inﬂuenced due to helmet Largest peak torque per subject HLargest peak torque per subject
4 N "
Evaluated in “worst-case” scenarios with increased speed shape than helmet 1it. Torque responses for all helmet fits
and increased range of motion. _ | | | _ ] | | | | | _
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If the head fixture showed repeatable and consistent behavior, -10 f ‘\5 1 -10 Wt \ Yo 4
_ the head fixture was deemed safe for next step of validation. -15 o 4 15 | | | | | -
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Phase || time (ms) %« 10% time (ms) <« 10%
Fixture Validation with an Adult Cohort Figure 3: Torque comparisons between all subjects with both helmet fits at 30°/s. Left: AP direction. Right: Lateral direction.

Solid lines: Loose fit; Dashed lines: Snug fit. Blue: AO1; Red: A02; Green; A03; Magenta: A04, Black: AOS5.

/Evaluation of self-selected snug and loose helmet fits. Subject\

on the sternocleidomastoid and upper trapezius muscles. D I S C U SS I O N & CO N C L U S I O N S

\ Direction order was randomized. . . .
~ < e There were no patterns between peak torque generation and helmet fit.
Isometric strength N ( ) o AP direction: all maximum peak torques occurred in extension.
measurements with Stiffness measurements o Lateral direction: maximum peak torques occurred more frequently towards the subjects’ right.
(__maximum subject efforts - J e Comparing measured peak torques to the literature, we found that our protocol results in
r o N 20°7 A comparable torque calculations of the atlantooccipital junction.®
S S
(with no effort) (with maximum effort) e Helmet fit does not affect subjects’ ability to engage with the equipment nor to produce
S 2 g maximum torque during the 30°/s portion of the protocol in both directions.

. . ) _ _
Measurement accuracy was determined by comparing e The custom head fixture produces consistent and repeatable data outputs.
measurements outputs within the adult subjects and to

. available literature.56 '} eNextsteps include testing pediatric volunteers 5-7 years old, to better understand the unique
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