INTRODUCTION

- Pediatric cervical spine injuries account for roughly 10% of all cervical spine injuries across all age groups.1-3
- Anatomical differences in children may account for this increased vulnerability of the cervical spine (c-spine).1,4
- The broad objective of this research is to quantify biomechanical responses of the c-spine in children 5–7 years old to aid and improve the biofidelity of pediatric human body models (HBMs) and anthropomorphic test devices (ATDs).
- However, this task is not possible without the development of a custom fixture that allows the quantification of c-spine biomechanics.
- This study is focused on the validation of a custom head fixture to quantify volunteer c-spine biomechanics.

MATERIALS & METHODS

A custom head fixture was designed and machined as an attachment to a Biodex Isokinetic Dynamometer to quantify c-spine strength and stiffness of pediatric volunteers in the anterior-posterior (AP) and lateral directions (Figure 1).

Figure 1: Custom head fixture mounted on the Biodex Isokinetic Dynamometer arm. Left: Subject seated in the AP direction of motion. Right: Subject seated in the lateral direction of motion.

• Validation of the fixture was performed in 2 phases to better understand the usability of the custom head fixture.

Phase I: Mechanical Validation

- Evaluated in “worst-case” scenarios with increased speed and increased range of motion.
- Artifact interference
- Load distribution
- Repeatability

If the head fixture showed repeatable and consistent behavior, the head fixture was deemed safe for next step of validation.

Phase II: Fixture Validation with an Adult Cohort

- Evaluation of self-selected snug and loose helmet fits. Subject efforts were assessed with surface electromyography (sEMG) on the sternocleidomastoid and upper trapezius muscles. Direction order was randomized.
- Isometric strength measurements with maximum subject efforts
- Stiffness measurements

Measurement accuracy was determined by comparing measurement outputs within the adult subjects to available literature.5,6

REFERENCES CITED

RESULTS

Figure 2: Torque output comparison between the custom head fixture and the manufacturer provided ankle attachment. Top: 5°/s velocity. Bottom: 60°/s velocity.

Table 1. Peak Torques Per Helmet Fit

<table>
<thead>
<tr>
<th>Subject and Helmet Fit</th>
<th>Peak Torque Flex. (Nm)</th>
<th>Peak Torque Ext. (Nm)</th>
<th>∆ Peak Torque (Nm)</th>
<th>Helmet Fit</th>
<th>∆ Helmet Fit (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A01_L</td>
<td>11.08</td>
<td>4.96</td>
<td>0.44</td>
<td>A01_L</td>
<td>1.08</td>
</tr>
<tr>
<td>A01_S</td>
<td>10.20</td>
<td>11.97</td>
<td>1.77</td>
<td>A01_S</td>
<td>0.55</td>
</tr>
<tr>
<td>A02_L</td>
<td>12.23</td>
<td>13.45</td>
<td>2.12</td>
<td>A02_L</td>
<td>0.60</td>
</tr>
<tr>
<td>A02_S</td>
<td>8.55</td>
<td>10.60</td>
<td>2.05</td>
<td>A02_S</td>
<td>0.87</td>
</tr>
<tr>
<td>A03_L</td>
<td>9.54</td>
<td>12.41</td>
<td>2.92</td>
<td>A03_L</td>
<td>0.87</td>
</tr>
<tr>
<td>A03_S</td>
<td>5.85</td>
<td>10.60</td>
<td>2.05</td>
<td>A03_S</td>
<td>0.87</td>
</tr>
<tr>
<td>A04_L</td>
<td>7.66</td>
<td>13.45</td>
<td>5.79</td>
<td>A04_L</td>
<td>0.35</td>
</tr>
<tr>
<td>A04_S</td>
<td>6.85</td>
<td>12.29</td>
<td>5.44</td>
<td>A04_S</td>
<td>0.35</td>
</tr>
<tr>
<td>A05_L</td>
<td>8.95</td>
<td>14.36</td>
<td>5.41</td>
<td>A05_L</td>
<td>0.80</td>
</tr>
<tr>
<td>A05_S</td>
<td>10.59</td>
<td>15.20</td>
<td>4.61</td>
<td>A05_S</td>
<td>0.80</td>
</tr>
</tbody>
</table>

Figure 3: Torque comparisons between all subjects with both helmet fits. Left: AP direction. Right: Lateral direction. Solid lines: Loose fit; Dashed lines: Snug fit. Blue: A00; Red: A01; Green: A02; Magenta: A03; Black: A04.

DISCUSSION & CONCLUSIONS

- There were no patterns between peak torque generation and helmet fit.
 - AP direction: all maximum peak torques occurred in extension.
 - Lateral direction: maximum peak torques occurred more frequently towards the subjects’ right.
- Comparing measured peak torques to the literature, we found that our protocol results in comparable torque calculations of the atlantooccipital joint.6
- Helmet fit does not affect subjects’ ability to engage with the equipment nor to produce maximum torque during the 30°′s portion of the protocol in both directions.
- The custom head fixture produces consistent and repeatable data outputs.
- Next steps include testing pediatric volunteers 5–7 years old, to better understand the unique characteristics of the pediatric c-spine.
- With these new data, we will help bridge the gap of knowledge in the pediatric biomechanics field and begin to improve the biofidelity of the current pediatric HBMs and ATDs.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the National Science Foundation (NSF) Center for Child Injury Prevention Studies at the Children’s Hospital of Philadelphia (CHOP) for sponsoring this study and its industry advisory board (IAB) members for their support, valuable insight, and direction. The views presented are those of the authors and not necessarily the view of CHOP, the NSF, or the IAB members. The authors thank the Center for Child Injury Prevention Studies (CChIPS) for sponsoring this project. Thanks to Michael Wilkerson, the BioCue Frame Mounted Research interface, and the BioCue Team for their invaluable support and feedback.

were no patterns between peak torque generation and helmet fit.
 - AP direction: all maximum peak torques occurred in extension.
 - Lateral direction: maximum peak torques occurred more frequently towards the subjects’ right.
- Comparing measured peak torques to the literature, we found that our protocol results in comparable torque calculations of the atlantooccipital joint.6
- Helmet fit does not affect subjects’ ability to engage with the equipment nor to produce maximum torque during the 30°′s portion of the protocol in both directions.
- The custom head fixture produces consistent and repeatable data outputs.
- Next steps include testing pediatric volunteers 5–7 years old, to better understand the unique characteristics of the pediatric c-spine.
- With these new data, we will help bridge the gap of knowledge in the pediatric biomechanics field and begin to improve the biofidelity of the current pediatric HBMs and ATDs.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the National Science Foundation (NSF) Center for Child Injury Prevention Studies at the Children’s Hospital of Philadelphia (CHOP) for sponsoring this study and its industry advisory board (IAB) members for their support, valuable insight, and direction. The views presented are those of the authors and not necessarily the view of CHOP, the NSF, or the IAB members. The authors thank the Center for Child Injury Prevention Studies (CChIPS) for sponsoring this project. Thanks to Michael Wilkerson, the BioCue Frame Mounted Research interface, and the BioCue Team for their invaluable support and feedback.