Kinematic Model Based Sensor Fusion for Inertial Measurement Units in Injury Biomechanics Noah Eckstein, Manoj Srinivasan, Yun-Seok Kang Injury Biomechanics Research Center, The Ohio State University #### INTRODUCTION - Measurements of whole-body position and orientation (pose) are important to injury biomechanics. - Current practice uses optoelectronic stereophotogrammetric systems (OSS). - Problems: calibration and occlusion - Drift-free inertial measurement unit (IMU) pose estimates are possible when kinematic models are used [1] - Objective: Develop a Kinematic model based IMU sensor fusion algorithm for anthropomorphic test devices (ATDs) (i.e., crash test dummies) Figure 1. OSS in ATD testing # METHODS: Instrumentation - The algorithm interprets measurements from four IMUs mounted to the ATD - Alternating placement ensures joint angle observability Figure 2. Link names and IMU types Figure 3. Joint angles and inertial coordinate system # METHODS: Algorithm Overview # METHODS: Breakpoint Selection The algorithm iteratively fits Squared piecewise 3rd order polynomials to the angular acceleration and specific force measurements, adding new break points in every iteration based on the quality of fit within each panel Var_i Figure 4. Break Point Placement - Algorithm starts with one panel - New break points are placed at the first moment of the weighted squared error distribution in time within panels with unacceptable # **METHODS: Optimization** Objective Function $$Cost = \sum_{i=1}^{n} \frac{(Measurement_{obs} - Measurement_{est})^2}{NoiseVariance}$$ - Minimizing this cost maximizes the posterior likelihood - Constraints - Continuity and twice differentiability of polynomials at breakpoints #### **METHODS: Simulation** - The algorithm was tested in simulation using a rigid body model in Simulink Simscape (MATLAB). - Simulated arm flailing from torso acceleration - The sensor noise variances and sample rates were set to mimic real experiments. Figure 5. Simscape animation ### RESULTS Figure 6. Relative Pose RMSE DISCUSSION - The algorithm only provides an advantage for relative pose measurement - Errors in position were uncorrelated to time, indicating little to no drift in relative pose for longer experiments - The algorithm depends on a zero mean gaussian noise model for the IMU Measurements and a highly accurate kinematic model - Though the simulation tests seem promising, no conclusions may be drawn as to the efficacy of this method as a replacement for OSSs #### CONCLUSIONS - Simulations show the algorithm and instrumentation scheme are superior to dead reconning for estimation of the kinematic state of an ATD upper limb and thoracic spine assembly - Future work must compare the performance of this method to OSS measurements using physical experiments in order to conclude on its value as a replacement for OSSs in ATD testing #### **ONGOING WORK** Physical pendulum testing Figure 8. Single Pendulum Physical ATD upper limb testing REFERENCES CITED Contact Email: Eckstein.81@buckeyemail.osu.edu Figure 9. 3D Double Pendulum #### **ACKNOWLEDGEMENTS** - The Ohio State University College of Engineering - The Injury Biomechanics Research Center Students and Staff • The Office of Undergraduate Research and Creative Inquiry