

# Kinematic Model Based Sensor Fusion for Inertial Measurement Units in Injury Biomechanics



Noah Eckstein, Manoj Srinivasan, Yun-Seok Kang

Injury Biomechanics Research Center, The Ohio State University

#### INTRODUCTION

- Measurements of whole-body position and orientation (pose) are important to injury biomechanics.
- Current practice uses optoelectronic stereophotogrammetric systems (OSS).
- Problems: calibration and occlusion
- Drift-free inertial measurement unit (IMU) pose estimates are possible when kinematic models are used [1]
- Objective: Develop a Kinematic model based IMU sensor fusion algorithm for anthropomorphic test devices (ATDs) (i.e., crash test dummies)



Figure 1. OSS in ATD testing

# METHODS: Instrumentation

- The algorithm interprets measurements from four IMUs mounted to the ATD
- Alternating placement ensures joint angle observability





Figure 2. Link names and IMU types

Figure 3. Joint angles and inertial coordinate system

# METHODS: Algorithm Overview



# METHODS: Breakpoint Selection

The algorithm iteratively fits Squared piecewise 3<sup>rd</sup> order polynomials to the angular acceleration and specific force measurements, adding new break points in every iteration based on the quality of fit within each panel

 $Var_i$ 



Figure 4. Break Point Placement

- Algorithm starts with one panel
- New break points are placed at the first moment of the weighted squared error distribution in time within panels with unacceptable

# **METHODS: Optimization**

Objective Function

$$Cost = \sum_{i=1}^{n} \frac{(Measurement_{obs} - Measurement_{est})^2}{NoiseVariance}$$

- Minimizing this cost maximizes the posterior likelihood
- Constraints
  - Continuity and twice differentiability of polynomials at breakpoints

#### **METHODS: Simulation**

- The algorithm was tested in simulation using a rigid body model in Simulink Simscape (MATLAB).
- Simulated arm flailing from torso acceleration
- The sensor noise variances and sample rates were set to mimic real experiments.



Figure 5. Simscape animation

### RESULTS



Figure 6. Relative Pose RMSE



DISCUSSION

- The algorithm only provides an advantage for relative pose measurement
- Errors in position were uncorrelated to time, indicating little to no drift in relative pose for longer experiments
- The algorithm depends on a zero mean gaussian noise model for the IMU Measurements and a highly accurate kinematic model
- Though the simulation tests seem promising, no conclusions may be drawn as to the efficacy of this method as a replacement for OSSs

#### CONCLUSIONS

- Simulations show the algorithm and instrumentation scheme are superior to dead reconning for estimation of the kinematic state of an ATD upper limb and thoracic spine assembly
- Future work must compare the performance of this method to OSS measurements using physical experiments in order to conclude on its value as a replacement for OSSs in ATD testing

#### **ONGOING WORK**

Physical pendulum testing



Figure 8. Single Pendulum

Physical ATD upper limb testing

REFERENCES CITED

Contact Email: Eckstein.81@buckeyemail.osu.edu



Figure 9. 3D Double Pendulum

#### **ACKNOWLEDGEMENTS**

- The Ohio State University College of Engineering
- The Injury Biomechanics Research Center Students and Staff • The Office of Undergraduate Research and Creative Inquiry