

Assessment of Occupant Response in Frontal Bus Crash Sled

Scenarios to Investigate Public Transportation Safety

¹Christopher Pastula, ¹ Kathy Tang, ¹Donata Gierczycka, ¹Duane Cronin ¹University of Waterloo, Mechanical and Mechatronics Engineering

t = 257ms

Introduction

- Improved understanding of occupant response to crash needed to enhance public transit occupant safety.
- Transport Canada initiated project to investigate public transit bus passenger injury risk using Anthropomorphic Test Devices (e.g. HIII).
- Sled tests indicate focal impact on the neck with the forward seat handrail.

Motivation of Study

- Validation of a Finite Element model of the experimental tests including the HIIIFE will enable optimization of bus interior passive safety design.
- Simulations allow for the use of a Human Body Model (HBM), providing detailed insights into occupant injury risk.

Objectives

- Validate a simulation model of the experimental sled tests with the HIIIATD.
- Compare kinematics and injury metrics of the HIII_{FE} and HBM (GHBMC M50).

Methods

1) Model Generation and Boundary Condition

 A FE model of the experimental sled buck was created with an applied deceleration pulse matching that of the experiment.

2) Model Validation

• Cross correlation analysis conducted using CORA to validate simulation model.

3) HIII ATD/HBM Comparison

 Kinematics and injury criteria for the HIII_{FE} and HBM were compared to determine the biofidelity of the HIIIATD.

Results and Discussion

- Kinematics show a tendency for the HIII knees to impact the forward seatback, followed by forward motion of the thorax and impact of the neck on the handrail.
- Cross correlation (0.833 average) shows good agreement between experimental tests and HIIIFE simulation.
- HIC, N_{ij}, CTI, and femur load predicted a low probability of severe injury.
- The HBM kinematics and injury criteria predictions agreed with the HIIIFE in that both models indicated the potential for injury due to focal impact on the neck.

Metric	CORA Score
Head X-Acceleration	0.888
Chest X-Acceleration	0.882
Pelvis X-Acceleration	0.948
Head Y Rotational Velocity	0.919
Neck Y Moment	0.759
Neck X Force	0.818
Neck Z Force	0.917
eft Femur Force	0.897
Right Femur Force	0.794
Chest Displacement	0.846
Total Cora Score	0.833

Experimental

Simulation |

Table 1: CORA values

t = 0ms

Knee impact with

forward seatback

t = 125ms

t = 155ms

t = 191ms

t = 195ms

Neck impact with

forward handrail.

velocity reaches

t = 357ms

t = 285mst = 347ms

Passenger rebounds from forward seat.

Acknowledgements

Honda R&D Americas

Conclusion and Next Steps

- Cross correlation showed good results between experiments and simulations and predicted focal impact on the neck of the passenger.
- Next steps: Parametric analysis by varying the seat pitch, seat height, and passenger location (inboard/outboard)