

Introduction

- In the instance of a high rate axial load to the lower limb as a result of an under-vehicle blast, the soft tissue layer in the plantar region of the foot is the first structure engaged.
- A material characterization of this structure under such loading conditions would provide a better understanding of the load paths to the lower extremity, and accurate material properties for the development of biofidelic anthropometric test devices (ATDs).

Goal

• Given that the current Hybrid-III ATD is known to lack accurate heel compression characteristics for high rate loading, it is the goal of this study to acquire accurate material properties of the human sub-calcaneal heel pad under high rate compressive loading.

Methods

- Protocols for the handling of biological materials were approved by the University of Virginia's Institutional Biosafety Committee.
- Three heel pads were collected from the hind foot region of 2 post mortem human surrogates.
- Heel pads were flash frozen and stored in a morgue freezer at -20°C until materials testing could be performed.
- Two to four tissue samples were cut to approximately 10mm in diameter and 10mm in height from each whole heel pad using a cylindrical boring tool. For ease of cutting, the heel pads were left partially frozen while being prepared.
- Samples were cut perpendicular to the surface of the skin and from the central portion of the pad.
- The quality of each sample was evaluated and those that were not of good cylindrical shape were discarded.
- Samples underwent a battery of ramp and hold stress relaxation tests for material characterization.

Mechanical Response of the Human Sub-Calcaneal Heel Pad under High Rate Compression Lee Gabler¹, Jeff Crandall¹, Robert S. Salzar¹

-				- 0.10
				- 0.05 ^Ш
0	0.02	0.04	0.06	┘ 0.00
	-	Гime (s)		
evente	en total cor	npression te	ests were pe	erformed.

- Se • Values for the coefficients of $\sigma^{e}(\varepsilon)$ and G(t) were determined using a reduced gradient algorithm (Excel Solver®, Microsoft®, Redmond, WA) to minimize the sum squared error between the modelpredicted force and experimental data.
- An average $\sigma^{e}(\varepsilon)$ and G(t) were determined through the previously described reduced gradient algorithm for both constitutive models.
- The instantaneous elastic shear modulus was determined to be (12.6 ± 3.7) kPa.

	Ехр	on
Unit	Coef	Va
kPa	μ	•
-	γ	•
-	G ₁	0.
-	G ₂	0
-	G ₃	0.
-	G ₄	0.
-	G ₅	0.
-	G_{∞}	0.

	Pol	yn
Unit	Coef	Va
kPa	a_1	3
kPa	a_2	(
kPa	a_3	1
-	<i>G</i> ₁	0.
-	G ₂	0.
-	G ₃	0.
-	G ₄	0.
-	<i>G</i> ₅	0.
-	G_{∞}	0.
-	G_4 G_5 G_∞	0. 0. 0.

Mathematical Formulation

The stress output $\sigma(\varepsilon, t)$, due to the strain input $\varepsilon = \varepsilon(t)$, was modeled using quasilinear viscoelasticity (QLV).

$$\sigma(\varepsilon,t) = \int_{0}^{t} G(t-t') \frac{\partial \sigma^{e}(\varepsilon)}{\partial \varepsilon} \frac{\partial \varepsilon}{\partial t'} dt'$$

• where $\sigma^{e}(\varepsilon)$ is the **instantaneous elastic response** and G(t)is the **reduced relaxation function**. Two nonlinear constitutive models were considered for $\sigma^e(\varepsilon)$: First, the tissue was modeled as a 1D material.

$$\sigma^e(\varepsilon) = a_1\varepsilon + a_2\varepsilon^2 + a_3\varepsilon^3$$

• where a_i are constants. Second, the tissue was assumed to be incompressible and isotropic and modeled using an exponential strain energy density function (SEDF).

$$W = \frac{\mu_o}{2\gamma} \left[e^{\gamma(I_1 - 3)} - 1 \right]$$

• where μ_0 is the elastic shear modulus, γ is the nonlinearity coefficient, and I_1 is the first invariant of the right Cauchy-Green strain tensor. Assuming uniaxial compression, the 2nd PK stress in the direction of loading is derived as

$$\sigma^{e}(\lambda) = \frac{\mu_{o}e^{\left[\gamma\left(\lambda^{2}+\frac{2}{\lambda}-3\right)\right]}(\lambda^{3}-1)}{\lambda^{3}}$$

• where $\lambda = \varepsilon + 1$ is the stretch ratio. G(t) was chosen to be

$$G(t) = G_{\infty} + \sum_{i=1}^{5} G_i \cdot e^{-\frac{t}{\tau_i}}$$

• where G_i 's are the normalized relaxation coefficients and τ_i 's are the time constants, $G_{\infty} + G_1 + G_2 + G_3 + G_4 + G_5 = 1$, and $\tau_1 = 0.001$ s, $\tau_2 = 0.01$ s, $\tau_3 = 0.1$ s, $\tau_4 = 1$ s, $\tau_5 = 10$ s.

• The assumption of QLV was justified using the method of isochrones. Three isochrones were chosen: $t_1 = 0.03$ s, $t_2 =$ 0.10s, and $t_3 = 5s$ after the peak stress. Stress vs. strain data for each isochron were plotted and fit with an exponential function $\alpha(e^{\beta\varepsilon} - 1)$, which provided a better fit over a linear function. Dividing the isochronous curves resulted in approximately constant values indicating no temporal nonlinearity up to 20% strain.

¹Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22903

Discussion

• The tissue behaved viscoelastic and spatially nonlinear. • At strains above 17% the $\sigma^{e}(\varepsilon)$ curves began to diverge and the exponential model predicted higher stresses. For strains below 17% the models were approximately equal.

• In sixteen out of seventeen tests, the polynomial model resulted in higher R² values and lower Sum Squared Error indicating a better fit.

• G(t) was nearly identical for both models.

• The shear modulus is in agreement with values reported in the literature; (8-16)kPa.

• A linear viscoelastic model was fit to the data, in addition to both QLV models, but did not capture the ramp and peak stress.

Limitations

The tissue was mechanically damaged through preparation tocols which may have significantly altered the material perties.

suring a flat loading surface and uniform, unconfined ormation of the tissue under compressive loading.

Conclusions

erial properties of the sub-calcaneal heel pad were rmined for engineering strains up to 20% and strain rates veen $(15-35)s^{-1}$.

was validated using the method of isochrones and used to vo constitutive models to the experimental data.

polynomial model indicated a better fit to the data.

shear modulus from the exponential SEDF agrees with the es reported in the literature.

Future Research

a will be collected up to 50% engineering strain.

l pad from the current Hybrid-III ATD will be

racterized and the material properties compared to those determined for humans.

3. Material properties will be validated through finite element analyses.

-This work was funded in part by the **United States Army**.