
Abstract 
The aim of this study is to investigate the propagation of 
shock waves and self-preserving waves in soft tissues 
such as aorta and brain as a mechanism of injury in high 
rate loading conditions as seen in blunt trauma and blast-
induced trauma (BIT). It is shown that such phenomena 
can only be seen in nonlinear viscoelastic materials and 
the existing linear and quasi-linear models predict only de-
caying waves. Various attempts to explain the mechanisms 
of soft tissue injuries e.g., traumatic aortic rupture (TAR) 
and traumatic brain injury (TBI) as a result of car accidents 
and sports injuries have been reported over the past 3 
decades. In recent years, with advances in protective 
gears, blast induced trauma (BIT) has also become a ma-
jor concern. To date, the mechanisms of soft tissue inju-
ries, especially at high-rate loadings, are still not clearly 
understood.  
As a blast wave enters a biological tissue, high-rate stress 
waves, which have longitudinal and shear components, 
develop in the tissue and such components can have dev-
astating effects on the tissue based on the amplitudes of 
the waves and the orientation of tissue fibers. In this study, 
nonlinear viscoelastic wave propagation in soft tissues is 
studied and a criterion for the development of one-
dimensional shock waves has been proposed. It is shown 
that realistic jumps in the acceleration that may happen in 
blast or blunt trauma evolve to shock waves that result in 
large discontinuities in strain and stress that may lead to 
tissue failure.  

 

Objectives 
The objective of this study is to first determine a physi-
cally viable material model for brain tissue, and to show 
the possibility of formation of shock waves in such mate-
rial. Secondly, the propagation of shock waves and self-
preserving waves in soft tissues has been studied and 
such waves have been proposed as a mechanism of in-
jury in soft tissues.  
 

 Uniaxial Experiments 
• Cylindrical samples of brain tissue with diameter~13mm 

and height~9mm cut 
• Samples wetted on the top and bottom surface to allow 

free boundary condition (Fig. 1) 
 

Theoretical Background 
Hyperelastic Model 
• Generalized Mooney-Rivlin model was used (6 terms) 

• Coefficients derived from two isochronous set of data, 
one close to instantaneous response and one close to 
steady-state response 

• Coefficients optimized using a constant k0 for true in-
stantaneous and steady-state response 

 
Viscoelastic Model 
• Quasi-Linear Viscoelastic (QLV) model used 
• Gi and βi are reduced relaxation amplitudes and decay 

rates respectively. 
• Four decay rates chosen [100, 10, 1, 0.1] 

 
Shock Wave Propagation 

• Plain longitudinal motion in homogeneous material 
• Intrinsic velocity (U(t)) defined as the time-derivative of 

the trajectory of the material point where the wave front is 
located at. 

• Jump in parameter f  is the change in its value immedi-

ately behind and after the wave front 

• Then we have 

• For a wave entering a homogeneous region initially at 
rest, the jump in the particle’s acceleration is obtained 
from the ODE below 

where 

In the above equations, ac acts as the critical amplitude 
and is a material constant. This means that for a given ma-
terial, there exists a critical amplitude, which determines 
that when a discontinuous wave enters the material, which 
is a characteristic of blast waves, whether the wave will be 
damped and dissipated or continue as an acceleration 
wave with constant amplitude or even become a shock 
wave, in which case it can have devastating effects on the 
tissue in terms of injury. 
 

Results 
As shown in Fig. 2, the ratio between the instantaneous 
elastic response and the steady-state response is very 
close to constant and therefore the QLV is an acceptable 
material assumption. Otherwise, two separate functions 
were required for instantaneous and steady-state respons-
es to model the behavior of the material. 
Mooney-Rivlin’s elastic coefficients derived from instanta-
neous and steady-state responses (Fig. 3). The coeffi-
cients are determined through a least-squares optimization 
Viscoelastic parameters determined from stress-relaxation 
curves (Fig. 4). The relaxation function used as the model 
is fitted to the stress-time data from the experiments while 
decay rates have been chosen initially based on the ramp 
time and duration of the experiments 
A significant  aspect of the current study is the possibility of 
formation of shock waves inside the material as shown in 
Fig. 5. 

Conclusions 
A novel method has been used in order to determine the 
material parameters. In this model, the elastic coefficients 
were derived from isochronous curves. This eliminates the 
need for non-physical data fitting. 
Based on the equations above, we can see that the initial 
value of the discontinuity in acceleration plays a significant 
role in determining whether a shock wave will form or be 
damped (Fig. 5). 
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Figure 1 -  The experimental setup. Brain specimen is 
placed between two plates undergoing compression. Sam-
ple can expand in the direction perpendicular to the motion  
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Figure 4 -  The reduced relaxation coefficients (Gi) 
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Figure 5 - Formation of shock waves. Based on the ini-
tial magnitude of the amplitude of the wave, it can be 

damped or form into a shock wave. 
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Figure 2 - The ratio between the instantaneous elastic re-
sponse and the steady-state response  

Figure 3 -  Instantaneous and steady-state elastic functions 
fitted to the experimental data in the form of generalized 
Mooney-Rivlin hyperelastic solid 
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