

PMHS Shoulder Stiffness Determined by Lateral and Oblique Impacts

S. Caupp¹, Y. Kang PhD¹, K. Moorhouse PhD², B. Suntay³, R. Herriott³, J. Bolte IV PhD¹

¹The Ohio State University, ²National Highway Traffic Safety Administration, Vehicle Research Test Center, ³Transportation Research Center Inc.

INTRODUCTION

- While side impacts are second in frequency for total motor vehicle crashes, side impacts have a higher mortality rate than other crash types^{1,2}
- In the study of the side impact, it is important to consider both lateral and oblique loading conditions; the oblique vector may result in more injuries¹
- The shoulder girdle is an important factor in determining the response of other parts of the body to lateral and oblique loading conditions²
- Past research has shown that the scapula may be responsible for absorbing impact energy²
- Study objectives include 1) comparing PMHS & adult volunteer quasi-static
 (QS) data, 2) comparing PMHS quasi-static & dynamic data, and 3) comparing PMHS lateral & oblique dynamic data
- o In the future, these datasets will aid in developing a more biofidelic shoulder model for both adult and pediatric ATDs

METHODS

Quasi-static testing

Modeled after a previous QS adult volunteer study³

Figure 1: Quasi-static test set-up

Dynamic testing

Modeled after a previous dynamic PMHS study⁴

Figure 2: Dynamic test set-up

REFERENCES

- Pintar, F., Maiman, D., Yoganandan, N. (2007). Occupant dynamics and injuries in narrow-object side impact. Enhanced Safety of Vehicles. Lyons, France.
- 2. Subit, D., Duprey, S., Lau, S., Guillemot, H., Lessley, D., Kent, R. (2010). Response of the human torso to lateral and oblique constant-velocity impacts. *Annals of Advances in Automotive Medicine*, 54: 27-40.
- 3. Suntay, B., Moorhouse, K., Bolte IV, J. (2011). Characterization of the pediatric shoulder's resistance to lateral loading conditions. *Enhanced Safety of Vehicles*. Washington, D.C.
- 4. Bolte IV, J., Hines, M., Herriott, R., McFadden, J., Donnelly, B. (2003). Shoulder impact response and injury due to lateral and oblique loading. *Stapp Car Crash Journal*, 47: 35-53.

ACKNOWLEDGEMENTS

John Borstad, PhD, OSU The students and staff of the IBRC

SPONSOR

RESULTS & DISCUSSION

QS – Oblique Loading Condition

Figure 3: QS oblique (X- and Y-components) full girdle FD curves for Test 1401, 4 trials

Table 1: QS Oblique Full Girdle Stiffness (K) Values

Test	K _X (N/mm)	K _Y (N/mm)		
1401	2.1	9.5		
1402	1.0	11.2		
Average	1.5 ± 0.8	10.3 ± 1.2		
Previous Study ³	1.6	7.0		

 K_Y > K_X due to the anatomical structure of the clavicle and the scapulothoracic joint

Dynamic – Lateral Loading Condition

Figure 4: Dynamic lateral full girdle forcedisplacement curves

Table 2: Dynamic Lateral Full Girdle Stiffness Values

Test	K (N/mm)		
1301	132.0		
1302	97.5		
1401	90.5		
1402	219.0		
Average	135 ± 59		

 Current FD curves fit the target corridors from the previous study⁴

Dynamic – Lateral vs. Oblique Impacts

Table 3: Injuries from Dynamic Testing

		Impact S	Shoulder	Joints		Bones	
Tes	t	Lateral	Oblique	SC	AC	Ribs	Scapula
130	1	R.	L.	L./R. laxity	-NA-	-NA-	-NA-
1302	2	L.	R.	L. laxity	L. laxity	L6/R7 fx	L. coracoid fx
140	1	R.	L.	L./R. laxity	-NA-	R2/R3 fx	-NA-
1402	2	L.	R.	L. laxity	-NA-	-NA-	-NA-

*R. = right; L. = left

Dynamic – Oblique Loading Condition

Figure 5: Dynamic oblique force (X- and Y-components) vs. time curves

Dynamic – Oblique Loading Condition (continued)

Figure 6: Dynamic oblique full girdle displacement (X- and Y-components) vs. time curves

CONCLUSIONS

- This study is ongoing; one more PMHS will be tested and dynamic data will be normalized to the 50th percentile male
- Limitations: small sample size (QS: n = 2; dynamic: n = 4), QS DAQ metal sensitivity, inaccurate method of measuring the QS lateral vector, non-normalized dynamic data
- QS data indicates a similar response of the PMHS and adult volunteer shoulder in the oblique loading condition (as compared to the volunteer's relaxed muscle state)
- The oblique vector in both QS and dynamic testing exhibited a lower force, higher displacement, and lower stiffness in the X-component compared to the Y-component
- At at an impact speed of 4.5 m/s, it is difficult to make a correlation between the lateral and oblique impact vector according to injury patterns