PMHS Shoulder Stiffness Determined by Lateral and Oblique Impacts S. Caupp¹, Y. Kang PhD¹, K. Moorhouse PhD², B. Suntay³, R. Herriott³, J. Bolte IV PhD¹ ¹The Ohio State University, ²National Highway Traffic Safety Administration, Vehicle Research Test Center, ³Transportation Research Center Inc. ## INTRODUCTION - While side impacts are second in frequency for total motor vehicle crashes, side impacts have a higher mortality rate than other crash types^{1,2} - In the study of the side impact, it is important to consider both lateral and oblique loading conditions; the oblique vector may result in more injuries¹ - The shoulder girdle is an important factor in determining the response of other parts of the body to lateral and oblique loading conditions² - Past research has shown that the scapula may be responsible for absorbing impact energy² - Study objectives include 1) comparing PMHS & adult volunteer quasi-static (QS) data, 2) comparing PMHS quasi-static & dynamic data, and 3) comparing PMHS lateral & oblique dynamic data - o In the future, these datasets will aid in developing a more biofidelic shoulder model for both adult and pediatric ATDs ## METHODS **Quasi-static testing** Modeled after a previous QS adult volunteer study³ Figure 1: Quasi-static test set-up ## Dynamic testing Modeled after a previous dynamic PMHS study⁴ Figure 2: Dynamic test set-up #### REFERENCES - Pintar, F., Maiman, D., Yoganandan, N. (2007). Occupant dynamics and injuries in narrow-object side impact. Enhanced Safety of Vehicles. Lyons, France. - 2. Subit, D., Duprey, S., Lau, S., Guillemot, H., Lessley, D., Kent, R. (2010). Response of the human torso to lateral and oblique constant-velocity impacts. *Annals of Advances in Automotive Medicine*, 54: 27-40. - 3. Suntay, B., Moorhouse, K., Bolte IV, J. (2011). Characterization of the pediatric shoulder's resistance to lateral loading conditions. *Enhanced Safety of Vehicles*. Washington, D.C. - 4. Bolte IV, J., Hines, M., Herriott, R., McFadden, J., Donnelly, B. (2003). Shoulder impact response and injury due to lateral and oblique loading. *Stapp Car Crash Journal*, 47: 35-53. #### **ACKNOWLEDGEMENTS** John Borstad, PhD, OSU The students and staff of the IBRC SPONSOR ## RESULTS & DISCUSSION #### **QS – Oblique Loading Condition** Figure 3: QS oblique (X- and Y-components) full girdle FD curves for Test 1401, 4 trials Table 1: QS Oblique Full Girdle Stiffness (K) Values | Test | K _X (N/mm) | K _Y (N/mm) | | | |--------------------------------|-----------------------|-----------------------|--|--| | 1401 | 2.1 | 9.5 | | | | 1402 | 1.0 | 11.2 | | | | Average | 1.5 ± 0.8 | 10.3 ± 1.2 | | | | Previous
Study ³ | 1.6 | 7.0 | | | K_Y > K_X due to the anatomical structure of the clavicle and the scapulothoracic joint #### **Dynamic – Lateral Loading Condition** Figure 4: Dynamic lateral full girdle forcedisplacement curves ## Table 2: Dynamic Lateral Full Girdle Stiffness Values | Test | K (N/mm) | | | |---------|----------|--|--| | 1301 | 132.0 | | | | 1302 | 97.5 | | | | 1401 | 90.5 | | | | 1402 | 219.0 | | | | Average | 135 ± 59 | | | Current FD curves fit the target corridors from the previous study⁴ #### Dynamic – Lateral vs. Oblique Impacts Table 3: Injuries from Dynamic Testing | | | Impact S | Shoulder | Joints | | Bones | | |------|---|----------|----------|-----------------|--------------|-----------------|----------------| | Tes | t | Lateral | Oblique | SC | AC | Ribs | Scapula | | 130 | 1 | R. | L. | L./R.
laxity | -NA- | -NA- | -NA- | | 1302 | 2 | L. | R. | L. laxity | L.
laxity | L6/R7 fx | L. coracoid fx | | 140 | 1 | R. | L. | L./R.
laxity | -NA- | R2/R3
fx | -NA- | | 1402 | 2 | L. | R. | L. laxity | -NA- | -NA- | -NA- | *R. = right; L. = left #### **Dynamic – Oblique Loading Condition** Figure 5: Dynamic oblique force (X- and Y-components) vs. time curves #### Dynamic – Oblique Loading Condition (continued) Figure 6: Dynamic oblique full girdle displacement (X- and Y-components) vs. time curves ### CONCLUSIONS - This study is ongoing; one more PMHS will be tested and dynamic data will be normalized to the 50th percentile male - Limitations: small sample size (QS: n = 2; dynamic: n = 4), QS DAQ metal sensitivity, inaccurate method of measuring the QS lateral vector, non-normalized dynamic data - QS data indicates a similar response of the PMHS and adult volunteer shoulder in the oblique loading condition (as compared to the volunteer's relaxed muscle state) - The oblique vector in both QS and dynamic testing exhibited a lower force, higher displacement, and lower stiffness in the X-component compared to the Y-component - At at an impact speed of 4.5 m/s, it is difficult to make a correlation between the lateral and oblique impact vector according to injury patterns