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Abstract 

 
Improvised explosive devices (IEDs) have caused traumatic brain injury (TBI) in approximately 

360,000 soldiers over the past decade. This injury requires immediate medical attention and 

victims can suffer from long-term neurological consequences when treatment is delayed. Early 

diagnosis of blast TBI (bTBI) may improve the clinical outcome of these patients. A better 

understanding of the mechanical response of the brain during and after these events may assist 

diagnosis of bTBI in both clinical and battlefield scenarios. Diagnostic methods using non-

invasive stiffness techniques, such as field-deployable ultrasound, rely on detecting changes to 

the mechanical properties of brain tissue after injury; however, these tools require a priori 

information on how injured tissue correlates with mechanical changes. Moreover, changes to the 

brain mechanical properties with a blast injury may be a) region-specific, b) time-specific, and 

c) blast severity-specific. The goal of this study is to characterize changes in the mechanical 

response of brain tissue following blast injury. This will improve our understanding of the 

mechanical response of the brain following injury for assessment and diagnosis of blast TBI.  

 

Thirty adult, male Sprague-Dawley rats were exposed to a primary blast wave generated by a 

compressed-gas driven shock tube. Exposed animals were placed inside the shock tube and 

subjected to a single ideal blast wave from one of two levels of blast severity: low (18-20 psi 

peak overpressure, 5 ms duration) or high (30-25 psi peak overpressure, 5 ms duration). Sham 

animals placed briefly inside shock tube but not exposed to blast injury. All animals were 

anesthetized before injury and euthanasia. Animals were sacrificed either at 2 or 24 hours 

following injury. Five animals were used for each of the six groups—sham 2 hour and 24 hour, 

blast low 2 hour and 24 hour, and blast high 2 hour and 24 hour. Whole brains were extracted 

immediately following death and sectioned in the coronal plane to extract 3 slices: frontal 

cortex, midbrain, and cerebellum. Ramp and hold indentation tests with a cylindrical indenter 

were performed at a depth of 0.6 mm and ramp hold of 30 s at 5 locations: frontal cortex, 

midbrain superior, midbrain aqueduct, midbrain inferior, and brainstem. Force-displacement 

data were analyzed using a 1-way anova followed by Tukey HSD multiple comparisons.  



 

Significantly higher forces were measured in the midbrain inferior region in the blast high 24 

hour when compared to sham group (+50%, p<0.05). This stiffening could be due to edema and 

other physiologic responses to injury. In addition, we observed lower forces in the brainstem 

region (-43%, p<0.05) of the blast low 24 hour as compared to the sham group. Bleeding is 

observed in the pons due to brain blast injury, which can contribute to this change. There were 

no significant changes in the 2 hour groups.  

 

The results show a temporal, regionally-dependent mechanical response—stiffening in the blast 

high 24 hour, softening in blast low 24 hour—to injury. The mechanical changes can serve as 

correlates to injury to improve detection and diagnosis of bTBI.  

 


