

Motivation

- 13, 000 spinal cord injury (SCI) cases in North America annually, with injury at the cervical level most common¹
- Combined lateral bending and compression loading frequently experienced during rollovers and sports impacts²

Study of combined loading conditions on bony incursion in the spinal canal will improve our understanding of SCI

SCOT

- Electromechanical sensor used to detect geometry changes of the spinal canal
- Highly flexible tube inserted into the specimen spinal canal
- SCOT tube filled with saline and constant current field created with a custom sensor (figure 2)
- Radial compression of SCOT tube results in change in crosssectional area and increased resistance to constant current flow (figure 1)

Figure 1: Radial compression to the tube cause a change in cross sectional area, resulting in an increase in electrical resistance

- Sensing elements along length of tube used to detect resulting voltage change due to radial compression
- Two step calibration process converts measured voltage to crosssectional area of SCOT tube

DEVELOPMENT OF IMPROVED SPINAL CANAL OCCLUSION TRANSDUCER (SCOT)

Bart Scicchitano, Angela D. Melnyk, Peter A. Cripton Orthopaedic and Injury Biomechanics Laboratory, Departments of Mechanical Engineering and Orthopaedics, University of British Columbia, Vancouver, Canada.

Aim

- Design, build and characterize a new sensor
- Improve upon previous iterations by increasing SCOT durability and signal stability

Methods

- Designed and built physical prototypes for testing
- Different sensing element sizes, electrical connections and casing materials considered (table 1)
- Added sponge surrounding the sensor to maintain its location in the SCOT tube
- Presently, controlling electronics remain unchanged
- Prototypes loaded in radial compression to a maximum displacement of 8 mm at a load rate of 2 mm/s

Sensor	Excitation / Ground element	Sensing element	Electrical connection	Casing material	
SCOT Original	2 loops 31 AWG wire	2 loops 31 AWG wire	Continuous wire	Standard wire insulation	
SCOT v1	Ø 3.97 mm SS ball	Ø 3.97 mm SS ball	Solder	Standard wire insulation	
SCOT v2	Ø 3.97 mm SS ball	Ø 3.18 mm SS ball	Silver doped epoxy	Standard wire insulation	
SCOT v3	Ø 3.97 mm SS ball	Ø 3.18 mm SS ball	Silver doped epoxy	Heat shrink	
SCOT v4	Ø 3.97 mm SS ball	Ø 3.18 mm SS ball	Solder + silver doped epoxy	Heat shrink	
SCOT v5	Ø 6.35 mm SS ball	Ø 3.18 mm SS ball	Solder	Heat shrink	
SCOT v6	Ø 3.97 mm SS ball	Ø 3.18 mm SS ball	Solder	Heat shrink	

Figure 2: SCOT original (top); and SCOTv6 prototype

Table 1: Summary of prototypes built for testing

Analysis

- SCOT iterations

Results

- the possibility of wire corrosion

Sensor	dV _{RMS} (mV) Mean ± SD	SNR (dB) Mean ± SD
SCOT Original	2.32 ± 1.51	74.42 ± 3.26
SCOT v2	2.15 ± 2.50	61.25 ± 2.50
SCOT v4	0.787 ± 0.611	72.32 ± 1.90
SCOT v5	2.35 ± 1.63	70.88 ± 1.96
SCOT v6	1.41 ± 2.00	72.39 ± 1.95

Future Work

- axial rotation)
- and lateral bending of cervical spine

References: 1. Dryden et al., 2003, Can. J. Neurol. Sci., 30(2), pp. 113-121; 2. Broglio et al., 2011, New Eng. J. Med. *Rhabil.*, **88**(3 Suppl. 1), pp. S84-88

• Converted output AC voltages to root mean square voltages (V_{RMS}) • Compared change in resting signal before and after loading, signal to noise ratio and durability were considered in comparison to previous

• Change in resting signal before and after loading reduced by 39% for SCOTv6 when compared to previous SCOT iterations (table 2) Effects of oxidation to sensing elements observed with original SCOT should be mitigated through use of stainless steel in new design • Extensive water proofing was completed on new design to minimize

Table 2: Summary of change in resting signal before and after loading, and signal to noise ratio for prototypes tested

Complete calibration and characterization of new design

• Use finished SCOT in flexibility study of cadaveric cervical spine segments to determine extent of canal occlusion during physiologic loading (1.5 Nm applied in flexion-extension, lateral bending and

• Use SCOT in cadaveric studies of dynamic combined compression

