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Introduction/Motivation

TRAUMATIC BRAIN INJURY

• Traumatic brain injury (TBI) is one of the major cause of death and disability in U.S.A.

• Approximately, 1.7 million people suffer from TBI each year with about 50000 deaths in U.S.

• Moderate and severe TBI causes focal injuries like skull fracture, hemorrage and can be detected
by X-ray CT and MRI.

• Mild TBI causes diffused injuries and cannot be detected using X-ray CT and MRI.

• Mild TBI diagnosis is primarily based on neurocognitive assessments.

• Computational models of the human head are extensively used to study mild TBI.
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SOFT TISSUE CONSTITUTIVE MODELS

• Large variability in the observed experimental response.

• The estimated constitutive model parameters - show a large variability.

• Constitutive models are themselves phenomenological.

• Brain tissue constitutive models are incorporated into finite element mod-
els used to study TBI.

• Calibrated using simple uniaxial/ shear experiments.
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Constitutive Modeling

• Brain tissue is assumed to be an isotropic and nonlinear visco-hyperelastic.

• The long-term viscoelasticity, the short-term viscoelasticity, and hyperelasticity contributions to the mechanical response of the
brain tissue are modeled separately (Pioletti et al.)

σ(t) = σe(C(t)) + σv(Ċ(t),C(t)) + F(t)

∫ ∞
δ
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∂Ċ
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Ψv = ηJ2(I1 − 3)

σlv(C(t), t− s) =
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Bayesian Framework for Calibration

f(θ|m) = d+ η

• f(θ|m) is the model form.

• d ∈ D is the hypothetical true data.

• η is the noise.

Using Bayes Theorem:

PRIOR PDF OF THE

PARAMETERS

The interval [a, b] is chosen
based on prior knowledge and
a simulation study.

NOISE: ADDITIVE GAUSSIAN

Likelihood : Gaussian (0, σ)

P (d|θ,m, I) =
n∏

i=1

1√
2πσi2

exp

[
−(f(θ|m)− di)2

2σi2

]

SAMPLING ALGORITHM

Used to obtain the pos-
terior and evidence.

NESTED MONTE CARLO SAM-
PLING based algorithm MULTI-
NEST.

NESTED MONTE CARLO

SAMPLING

Goal: Calculate P (d|m, I) =∫
θ
P (d|θ,m, I)P (θ|m, I) dθ

Prior distribution: π(Θ)

Differential element of
prior “mass”:
→dX = π(Θ)dΘ

Prior volume :
→X(λ) =

∫
{θ:L(Θ)>λ} π(Θ)dΘ

Evidence :
→Z =

∫∞
0 X(λ)dλ

→L(X(λ)) = λ

→Z =
∫ 1

0 L(X)dX
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Calibration process - Stochastic Nonlinear Visco-Hyperelastic Model

• Cylindrical specimens d=22mm, l=14mm

• Relaxation test in compression: Strain rate of 50 s−1

• Max nominal strain of 20,30,40,50,60,70 %

G1 τ1(s) G2 τ2(s) G3 τ3(s)
4.168 1.512 E-02 0.828 2.833 E-01 0.606 1.732

• Uniaxial unconfined compression test

• Strain rate of 1 s−1, 10 s−1,50 s−1

• Compare the response constitutive model with MLE
of the parameters to the experimental data

B1(kPa) B2 η(kPa s)
0.675 0.431 0.793 E-02

• Distribution of the parameters
B1(kPa) , B2 , η(kPa s)

• Obtained using Bayesian calibration

Deterministic Computational Model

Geometry and Constitutive Model
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• SIMon FE head model

• 45875 elements

• Cerebrum, cerebellum, and
brain stem - nonlinear visco-
hyperelastic

• UMAT in LS-Dyna

• Used MLE values of parameters

Loading and Boundary Conditions

• A free boundary condition -
simulate impact

• Time duration of the impact -
too short for the neck to influ-
ence kinematics of the head re-
sponse

• Choose only angular velocity in
sagittal plane

• Impact duration of 0.115 sec

• Each simulation takes 60 min-
utes on 60 processors

Statistical Surrogate Model for the Computational Model

SAMPLING
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• A finite element simulation for every sample (22000) -
not feasible computationally

• 104 samples - parameter space - Latin hypercube sam-
pling - LS-OPT

• 90 - training , 14 - validating the surrogate model

• A finite element simulation run for each of the 104 sam-
ples - Injury criterion calculated

GAUSSIAN PROCESS MODEL

• Stationary spatial process is represented by

Y(θ) = µ(θ) + w(θ) + ε(θ)

• θ: parameter space, Y(θ): injury criterion

• µ(θ) = XT (θ)β, w(θ) = N
(
0, C(φ, σ2)

)
• ε(θ) = N

(
0, τ2I

)
• Obtain the posterior probability P ({βββ,φφφ, σ2}|Y)

References

1. Feroz, F. et.al, Multinest: an efficient and robust bayesian inference tool for cosmology and particle physics, Monthly Notices of the Royal Astronomical Society, 398(4):1601?1614, 2009.

2. S. Madireddy, B. Sista, K. Vemaganti, “A Bayesian approach to selecting hyperelastic constitutive models of soft tissue”, Computer Methods in Applied Mechanics and Engineering, 291(2015), 102-122.

3. S. Madireddy, B. Sista, K. Vemaganti, “Bayesian calibration of hyperelastic constitutive models of soft tissue”, Journal of Mechanical Behavior of Biomedical Materials., 59 (2016) 108-127.

4. DP. Pioletti and LR. Rakotomanana, “Non-linear viscoelastic laws for soft biological tissues”, European Journal of Mechanics A-Solids, 19(2000), 749?759.

Brain Injury Criteria Distribution

• Maximum principal strain is selected as the injury criterion.

• Uncertainty in the material parameters is propagated to the injury criterion.

• Considering the injury threshold to be 0.33 - The probability that the mild TBI injury occurs for this
loading is 85%

Summary & Conclusions

• Bayesian framework for calibration takes the experimental uncertainty into consideration to obtain a
distribution of parameters.

• Experimental data used covers the typical strain rates experienced during impact loads.

• Developed a stochastic nonlinear visco-hyperelastic model that describes the experimental data and
its uncertainty.

• A finite element computational model (SIMon) is used to simulate the injury load in vehicle crash test.

• The surrogate model based approach enables us to calculate the probability that an injury tolerance
is reached for a given impact loading.

• This probabilistic method can be used to further simulate injuries and calculate various injury criteria
with higher fidelity.


