Differences in Injury Outcomes in Children versus Adults

Principal Investigator: Mark R. Zonfrillo, MD, MSCE
Co-Investigator(s): Ashley A. Weaver, PhD, Joel D. Stitzel, PhD,
Student: Samantha Schoell, MS
Mentors: Uwe Meissner, Dan Robertson, Eric Dahle, Phil Przybylo,
Hiromasa Tanji, Doug Longhitano, Ann Mallory

Project Goal

Identify specific injuries that result in varying levels of morbidity and mortality (both greater and lesser) in children when compared to adults
Background

• Abbreviated Injury Scale (AIS)
 – Anatomically based, consensus derived, severity scoring system
 – Global system of choice for injury data collection
 – Measures threat to life, tissue damage, complexity of treatment, and injury impairment on an ordinal scale
 – May be age-specific differences in injury outcomes

Background

Mortality Risk
• Associated mortality with an injury
 • Data Source: NTDB
 • Quantified for:
 – Pediatrics
 – Adults

Disability Risk
• Associated disability with an injury
 • Data Source: NTDB
 • Quantified for:
 – Pediatrics
 – Adults

Time Sensitivity
• Associated the urgency with which an injury should be treated
 • Data Source: Expert Survey Data
 • Quantified for:
 – Pediatrics
 – Adults
Background

Disability Risk Ratio vs Mortality Risk Ratio for 240 Common AIS 2+ Motor Vehicle Crash Injuries in Pediatrics

- Low Mortality Risk Ratios (MRRs) can have high Disability Risk Ratios
- These injuries still present opportunity to dramatically affect lives – especially pediatric, who have lower MRR than adults

Disability Risk

- Largest aggregation of trauma registry data
- Data from participating trauma centers

Sample Sizes

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Ages</th>
<th># Occupants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pediatric</td>
<td>7-18</td>
<td>63,307</td>
</tr>
<tr>
<td>Adult</td>
<td>19-45</td>
<td>214,883</td>
</tr>
<tr>
<td>Middle Age</td>
<td>46-65</td>
<td>77,728</td>
</tr>
<tr>
<td>Older Adult</td>
<td>66+</td>
<td>41,753</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>397,671</td>
</tr>
</tbody>
</table>

- Inclusion Details
 - Age ≥ 7 years old
 - Alive at discharge
 - Only injuries found on Top 95% Injury Lists for Children and Adults (NASS-CDS 2000-2011)
FIM Scores

- Functional Independence Measures (FIM) to evaluate disability after trauma
- NTDB contains truncated form with 3 items
 - FIM-FEED: ability to self-feed at discharge
 - FIM-LOCOMOT: ability to ambulate at discharge
 - FIM-EXPRESS: ability to express one’s self at discharge

Numeric score (1-4)
- (4) – Complete Independence
- (3) – Independence with Device
- (2) – Modified Dependence
- (1) – Complete Dependence

Disabled: If any of the FIM metrics = 1 or 2
Not Disabled: If all FIM metrics = 3 or 4

NTDB FIM Scores

NTDB FIM Score Availability

<table>
<thead>
<tr>
<th>Group</th>
<th>No FIM</th>
<th>No FIM %</th>
<th>FIM</th>
<th>FIM %</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Pediatric)</td>
<td>35,796</td>
<td>57%</td>
<td>27,511</td>
<td>43%</td>
<td>63,307</td>
</tr>
<tr>
<td>2 (Adult)</td>
<td>117,931</td>
<td>55%</td>
<td>96,952</td>
<td>45%</td>
<td>214,883</td>
</tr>
<tr>
<td>3 (Middle Age)</td>
<td>42,659</td>
<td>55%</td>
<td>35,069</td>
<td>45%</td>
<td>77,728</td>
</tr>
<tr>
<td>4 (Older Adult)</td>
<td>22,515</td>
<td>54%</td>
<td>19,238</td>
<td>46%</td>
<td>41,753</td>
</tr>
</tbody>
</table>
NTDB Disability Status

Pediatric Occupants
- Disabled: 13%
- Not Disabled: 87%

Adult Occupants
- Disabled: 17%
- Not Disabled: 83%

<table>
<thead>
<tr>
<th>Group</th>
<th>Not Disabled</th>
<th>Not Disabled %</th>
<th>Disabled</th>
<th>Disabled %</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Pediatric)</td>
<td>28,748</td>
<td>87%</td>
<td>4,473</td>
<td>13%</td>
<td>33,221</td>
</tr>
<tr>
<td>2 (Adult)</td>
<td>100,532</td>
<td>86%</td>
<td>16,265</td>
<td>14%</td>
<td>116,797</td>
</tr>
<tr>
<td>3 (Middle Age)</td>
<td>34,695</td>
<td>81%</td>
<td>8,041</td>
<td>19%</td>
<td>42,736</td>
</tr>
<tr>
<td>4 (Older Adult)</td>
<td>16,080</td>
<td>70%</td>
<td>6,930</td>
<td>30%</td>
<td>23,010</td>
</tr>
</tbody>
</table>

NTDB Disabled Pediatrics

Disabled Pediatric Occupants (n=4,473)
- Only Self-Feeding: 4%
- Only Locomotion: 23%
- Only Expression: 3%
- Self-Feeding and Locomotion: 10%
- Self-Feeding and Expression: 1%
- Locomotion and Expression: 2%
- Self-Feeding, Locomotion, Expression: 57%
NTDB Disabled Adults

Disabled Adult Occupants (n= 31,236)

- 20,277, 65%
- 8,811, 3%
- 3,361, 12%
- 3,614, 12%
- 491, 16%
- 1,011, 3%
- 159, 0%
- 379, 1%

- AIS 2: 58%
- AIS 3: 33%
- AIS 4: 7%
- AIS 5: 2%

Body Region:
- Thorax: 14%
- Lower Extremity: 35%
- Upper Extremity: 13%
- Spine: 11%
- Abdomen: 7%
- Head: 10%
- Face: 10%
- Neck: 0%

AIS Severity:
- AIS 2: 58%
- AIS 3: 33%
- AIS 4: 7%
- AIS 5: 2%

Locomotion:
- Only Locomotion
NTDB Disabled Adults

AIS Severity
- AIS 2: 43%
- AIS 3: 35%
- AIS 4: 16%
- AIS 5: 6%

Body Region
- Head: 26%
- Face: 14%
- Neck: 0%
- Thorax: 16%
- Abdomen: 7%
- Spine: 12%
- Upper Extremity: 15%
- Lower Extremity: 10%

Disability Risk Ratios

\[
\text{DRR} = \frac{\#\ \text{Disabled} \text{after injury}}{\text{Total} \#\ \text{with injury}}
\]

Example: AIS 160699.2
Lethargic, stuporous, obtunded post-resuscitation, Admission/at scene GCS 9-14
Ages 7-18yo

Disability Risk Ratio
- Disabled: 14%
- Not Disabled: 86%
Disability Risk Ratios

\[\text{MAIS Adjusted DRR (DRR}_{\text{MAIS}}) = \frac{\text{# Disabled after injury w/ MAIS = Injury’s AIS}}{\text{Total # Injured w/ MAIS = Injury’s AIS}} \]

Example: AIS 160699.2

Exclude patients with AIS 3+ injury, then calculate disability risk

Disability Risk Ratios

<table>
<thead>
<tr>
<th>Age Group</th>
<th>1 (Pediatric)</th>
<th>2 (Adult)</th>
<th>3 (Middle Age)</th>
<th>4 (Older Adult)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median DRR</td>
<td>0.32</td>
<td>0.32</td>
<td>0.38</td>
<td>0.50</td>
</tr>
<tr>
<td>Median DRR_{\text{MAIS}}</td>
<td>0.22</td>
<td>0.25</td>
<td>0.31</td>
<td>0.47</td>
</tr>
</tbody>
</table>
DRR$_{MAIS}$ and Body Region

DRR$_{MAIS}$: FIM Component for Head Injuries

Pediatric
- Only Self-Feeding: 26%
- Only Locomotion: 12%
- Only Expression: 3%
- Self-Feeding and Locomotion: 3%
- Self-Feeding and Expression: 4%
- Only Expression: 3%

Adult
- Only Self-Feeding: 45%
- Only Locomotion: 11%
- Only Expression: 3%
- Self-Feeding and Locomotion: 36%
- Self-Feeding and Expression: 30%
- Only Expression: 5%

Middle Age
- Only Self-Feeding: 39%
- Only Locomotion: 13%
- Only Expression: 3%
- Self-Feeding and Locomotion: 36%
- Self-Feeding and Expression: 39%
- Only Expression: 1%

Older
- Only Self-Feeding: 41%
- Only Locomotion: 18%
- Only Expression: 1%
- Self-Feeding and Locomotion: 34%
- Self-Feeding and Expression: 39%
- Only Expression: 1%
DRR\textsubscript{MAIS}: FIM Component for Thoracic Injuries

- **Pediatric**
 - Only Self-Feeding: 4%
 - Self-Feeding and Locomotion: 3%
 - Only Locomotion: 18%
 - Self-Feeding and Expression: 3%
 - Only Expression: 1%
 - Locomotion and Expression: 1%
 - Self-Feeding, Locomotion, Expression: 61%

- **Adult**
 - Only Self-Feeding: 3%
 - Self-Feeding and Locomotion: 18%
 - Only Locomotion: 3%
 - Self-Feeding and Expression: 15%
 - Only Expression: 13%
 - Locomotion and Expression: 1%
 - Self-Feeding, Locomotion, Expression: 64%

- **Middle Age**
 - Only Self-Feeding: 2%
 - Self-Feeding and Locomotion: 15%
 - Only Locomotion: 3%
 - Self-Feeding and Expression: 2%
 - Only Expression: 6%
 - Locomotion and Expression: 13%
 - Self-Feeding, Locomotion, Expression: 66%

- **Older**
 - Only Self-Feeding: 3%
 - Self-Feeding and Locomotion: 23%
 - Only Locomotion: 3%
 - Self-Feeding and Expression: 18%
 - Only Expression: 18%
 - Locomotion and Expression: 0%
 - Self-Feeding, Locomotion, Expression: 54%

DRR\textsubscript{MAIS} Body Region Analysis

- Analysis of specific head and thoracic injuries
 - Larger variations of DRR\textsubscript{MAIS} within these body regions
- **Head**
 - 54 unique AIS codes present
 - 8 injury groups based on structure of the injury and injury type
- **Thorax**
 - 27 unique AIS codes present
 - 7 injury groups based on structure of the injury and injury type
DRR_{MAIS} Head Injury Analysis

Head Injuries

- **Brain Stem Injury**: Pediatric
- **Contusion/Hemorrhage**: Older Adult
- **Diffuse Axonal Injury**: Adult
- **Epidural Hemorrhage**: Older Adult
- **Intracerebral Hemorrhage**: Older Adult
- **Loss of Consciousness**: Pediatric
- **Skull Fracture**: Older Adult
- **Subdural/ Subarachnoid Hemorrhage**: Older Adult

Injury Group Analysis

<table>
<thead>
<tr>
<th>Injury Group</th>
<th>Age Group with 1st Highest DRR</th>
<th>Age Group with 2nd Highest DRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain Stem Injury</td>
<td>Pediatric</td>
<td>Adult</td>
</tr>
<tr>
<td>Contusion/Hemorrhage</td>
<td>Older Adult</td>
<td>Pediatric</td>
</tr>
<tr>
<td>Diffuse Axonal Injury</td>
<td>Adult</td>
<td>Middle Age</td>
</tr>
<tr>
<td>Epidural Hemorrhage</td>
<td>Older Adult</td>
<td>Middle Age</td>
</tr>
<tr>
<td>Intracerebral Hemorrhage</td>
<td>Older Adult</td>
<td>Middle Age</td>
</tr>
<tr>
<td>Loss of Consciousness</td>
<td>Pediatric</td>
<td>Adult</td>
</tr>
<tr>
<td>Skull Fracture</td>
<td>Older Adult</td>
<td>Middle Age</td>
</tr>
<tr>
<td>Subdural/ Subarachnoid Hemorrhage</td>
<td>Older Adult</td>
<td>Middle Age</td>
</tr>
</tbody>
</table>
DRR_{MAIS} Thoracic Injury Analysis

Thoracic Injuries

<table>
<thead>
<tr>
<th>Injury Group</th>
<th>Age Group with 1<sup>st</sup> Highest DRR</th>
<th>Age Group with 2<sup>nd</sup> Highest DRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diaphragm Laceration/Rupture</td>
<td>Older Adult</td>
<td>Adult</td>
</tr>
<tr>
<td>Flail Chest</td>
<td>Pediatric</td>
<td>Older Adult</td>
</tr>
<tr>
<td>Heart/Aorta Laceration</td>
<td>Older Adult</td>
<td>Middle Age</td>
</tr>
<tr>
<td>Hemo/Pneumothorax</td>
<td>Older Adult</td>
<td>Middle Age</td>
</tr>
<tr>
<td>Lung Contusion/Laceration</td>
<td>Older Adult</td>
<td>Middle Age</td>
</tr>
<tr>
<td>Pneumomediastinum</td>
<td>Middle Age</td>
<td>Older Adult</td>
</tr>
<tr>
<td>Rib Fracture</td>
<td>Older Adult</td>
<td>Middle Age</td>
</tr>
</tbody>
</table>

Older Adult tended to have highest DRR
Next Steps

• ISS-adjusted DRRs
 – Use frequency distribution of ISS of the sample to determine logical cutoff values
 – Group patients by cutoff values

• Combine with MRR & Time Sensitivity analyses
 – Identify specific injuries that have dramatically different outcomes in children versus adults

Thank you!

Questions?